4 October 2011 German-Japanese Workshop Modern Trends in QCD

Lattice QCD and High Performance Computing in Japan

Akira Ukawa University of Tsukuba Japan

- eastern Japan Great earthquake
- quarks, hadrons, nuclei and lattice QCD
- Japanese "K" computer Project
- summary

Eastern Japan Great Earthquake

- o Triple disasters
 - The earthquake
 - The tsunamis
 - The Nuclear Power Plant

14:46 JST on 11 March 15:00-16:00 on 11 March 11 – 15 March

- Human loss and damages
 - 15,805 died, 4,040 still missing (over 0.2% of the area population), 75,000 still relocated from home
 - 222,905 houses destroyed; 454,711 damaged
 - 22,000 ships lost (80% in the area)/300 sea ports damaged
 - 24,000ha farmland damaged by tsunami (2.6% in the area)
 - Total damage estimated at 300B\$
- Wish to provide a snapshot from computational science point of view

The earthquake had a strong and long time shaking Courtesy: T. Furumura (U. Tokyo)

NIED K-NET/KiK-net strong shaking data collected at about 1800 sites

NIED: National Research Institute for Earth Science and Disaster Prevention

The tsunamis were captured by seafloor pressure gauge Courtesy: T. Furumura (U. Tokyo)

The combination of deep and shallow plate slips generated the big tsunamis Courtesy: T. Furumura (U. Tokyo)

Fukushima Dai-ichi nuclear power plant

PROPERTY OF

Fukushima Dai-Ichi plant

Tsukuba

Tokyo

Kyoto

Osaka

- Located on the pacific coast about 220km N of Tokyo
- 6 BWR reactors built from 1971 to 1979 with total output of 4.7GW
- No. 1, 2, 3 reactors running at the time of earthquake; No. 4, 5, shutdown for maintenance
- Hit by 14m high tsunami arou
 15:30 JST
- o Lost all JST

Photos made public by TEPCO on 24 May

Measured radiation across Japan

- Computational science could not foresee the 3.11 earthquake and tsunamis.
- Yet computational science is the key to prevent such disaster to happen again.
- Grave social responsibility of the act of prediction in computational science.
 - Reliability and Openness -

Help from the world LQCD community

- After the earthquake, and throughout the summer, computing resources in Japan were substantially cut due to severe electricity shortage (15% mandatory cut imposed by the Government)
- Very early (March-April) proposals of help from oversea lattice colleagues
 - O UK offered the use of HECTOR supercomputer at Edinburgh; 3 groups in computational science
 - US offered the use of USQCD resources at FNAL, JLAB, BNL up to 10% untill the end of 2011;6 groups in lattice QCD
- We imagine that this is not an easy decision, not just because the resource for their own is reduced, but also the funding is given to achieve their own scientific goals.

To quarks, hadroans, show the state of the s

- Lattice QCD has turned a corner over the last couple of years.
- Previously, despite the promise, it had remained an uncertain method requiring assumptions/ extrapolations in a number of ways (quenching, unphysically large quark masses, etc).
- Progress over the years has been removing these restrictions, and it has become a real first principle method *allowing precision calculations of physical quantities directly at the physical point.*

What I wish to do today

Review recent progress and try to share this view with you

- Algorithmic progress and physical point simulation
- Selected topics of personal interest
- Going beyond particle physics a trial with Helium nuclei –

Algorithmic progress and Physical point simulation

Obstacles with lattice QCD calculations

- Using quark action with chiral symmetry
 - Domain-wall/overlap formalism have resolved the issue
- o Including quark vacuum polarization effects
 - Quenching(ignore these effects) is a thing of the past, Nf=2+1 calculations (include up, down, strange quark effects) now standardå
- Using small enough lattice spacing
 - Improved lattice actions for minimizing lattice spacing errors have been developed and are employed
- o Using large enough lattice volume
 - No real remedy other than to use large enough volume
 - Using light enough quark masses
 - Relied on chiral perturbation theory to extrapolate from heavy quark masses; a large source or ambiguity in lattice calculations

 Physical quantities are given by (multi-dimensional)integral averages

$$\left\langle O(U,\overline{q},q)\right\rangle = \frac{1}{Z} \int \prod_{n\mu} dU_{n\mu} \prod_{n} d\overline{q}_n dq_n O(U,(U,\overline{q},q)) e^{-S_{QCD}}$$

Monte Carlo calculation using importance sampling

But, of course(?), machine power by itself was not enough ...

$$\frac{m_{\pi}^2}{m_{ud}} \propto 1 + \frac{2Bm_{ud}}{(4\pi f)^2} \log \frac{2Bm_{ud}}{\mu^2} + \cdots$$

- o However, extrapolation difficult to control since
 - Convergence radius a priori not known
 - Have to determine a number of unknown constants

24

Mass spectrum of hadrons 2008

Single hadrons are now (almost) under control!

How that progress came about?

- Molecular dynamics equation of hybrid Monte Carlo algorithm
 - $\frac{d}{d\tau}U_{n\mu} = -iU_{n\mu}P_{n\mu}$ quark force $\frac{d}{d\tau}P_{n\mu} = F_{n\mu} = \frac{1}{g^2}(UUUU)_{n\mu} + \overline{\phi}\left(\frac{1}{D(U)}\right)\frac{\partial D(U)}{\partial U_{n\mu}}\left(\frac{1}{D(U)}\right)\phi$ Most time-consuming part

Most time-consuming part of computation

 Molecular dynamics equation is integrated in discrete steps, so a larger time step is better!

This is an acceleration based on physics!

M. Luescher (2005)

 $F_{quark,IR}$

15000

20000

MD evolution

10000

Upshot of algorithmic progress

- *Realistic calculation directly at the physical point finally reality*
 - Fruit of continuous effort over 25 years toward: Better physics understanding, Better algorithms, and More powerful machines
- Change of philosophy from "simulation" to "calculation"
 - No more approximations/extrapolations (other than the continuum extrapolation)
 - In particular, no more reliance (other than checks) on ChPT
 - Gluon configuration produced is strong interaction in Nature itself

Impacts

- Expect fundamental issues of lattice QCD as particle theory make major progress over the next five year range
 - Single hadron properties and fundamental constants
 - Precision flavor physics (<1%) and resolution of old issues including K→ппdecays</p>
 - Hot/dense QCD with chiral lattice action on large lattices and physical pion mass
- Vast area of multi-hadron systems/atomic nuclei lies in wait to be explored
 - Nuclear force from lattice QCD
 - Exotic nuclei with unusual n/p ratios/strangeness etc

Several (diverse) subjects of personal interest

Can you sit exactly at the physical point?

- NO, but this can be resolved by the reweighting technique.
- o Reweighting technique
 - An old idea by A. Ferrenberg, R. Swendsen, PRL 61, 2635 (1988), used in many phase transition studies
 - Recently applied to *shift quark mass by a small amount*

See e.g., A. Hasenfratz etal PRD78, 014515 (2008)

$$\int \prod_{\ell} dU_{\ell} \det \left[D(U) + m'_{q} \right] e^{-S_{gluon}(U)} = \int \prod_{\ell} dU_{\ell} \frac{\det \left[D(U) + m'_{q} \right]}{\det \left[D(U) + m_{q} \right]} \det \left[D(U) + m_{q} \right] e^{-S_{gluon}(U)}$$

$$\left\langle O\right\rangle_{m'_{q}} = \left\langle O\cdot R\right\rangle_{m_{q}} \quad R = \frac{\det\left[D(U) + m_{q}\right]}{\det\left[D(U) + m'_{q}\right]} = \det\left[1 + \left(m_{q} - m'_{q}\right)\left(D(U) + m'_{q}\right)^{-1}\right]$$

Have to calculate determinant ratio only

Works well to fine-tune to the physical point

PACS-CS Collaboration, PRD81, 074503 (2010)

Isospin breaking

– further application of reweighting –

 Isospin breaking in some channels is determined very precisely, e.g.,

$$m_{\pi^{\pm}} - m_{\pi^0} = 4.5936 \pm 0.0005 MeV$$

 $m_{neutron} - m_{proton} = 1.2933321 \pm 0.0000004 MeV$ • Very interesting probe to examine

- up/down quark mass difference, $m_{up} \neq m_{down}$ including the possibility of $m_{up} \approx 0$
- requires disentangling QED effects

$$\frac{2}{3}e, \quad Q_{down} = -\frac{1}{3}e$$

- Apply reweighting to
 - Split up and down quark masses
 - Introduce EM coupling effects , i.e., QCD+QED simulation

 $Q_{un} =$

Preliminary Result : ratio of K⁰ to K⁺ propagators

N. Ukita et al, PACS-CS Collaboation, Lattice 2011

$$\frac{\langle K^{0}(t)K^{0}(0)\rangle}{\langle K^{+}(t)K^{+}(0)\rangle} = \frac{C_{K^{0}} e^{-m_{K^{0}}t}}{C_{K^{+}} e^{-m_{K^{+}}t}}$$

$$= \frac{C_{K^{0}}}{C_{K^{+}}} \left[1 - (m_{K^{0}} - m_{K^{+}})t + \mathcal{O}\left((m_{K^{0}} - m_{K^{+}})^{2}\right)\right].$$
Fit formula = $C(1 - \delta mt).$

$$\delta m|_{\text{Fit}} = 3.21(57)[\text{MeV}]$$

$$\delta m|_{\text{Exp}} = 3.937(28)[\text{MeV}]$$

Preliminary result from 32 configs

N. Ukita et al, PACS-CS Collaboation, Lattice 2011

	Lattice	Experiment
m π+	39.7(5.5) [MeV]	39.570 8(35) [MeV]
mĸ+	492.4(8.1) [MeV]	493.677(16) [MeV]
m _{K0}	497.6(8.1) [MeV]	497.614(24) [MeV]
тко - тк+	3.21(57) [MeV]	3.937(28) [MeV]
mu	I.97(67) [MeV]	
md	<mark>4.31(83)</mark> [MeV]	
m _u / m _d	0.457(93)	
(<mark>mu + m</mark> d)/2	3.14(72) [MeV]	
ms	90.32(67) [MeV]	
$2m_{s/}(m_u + m_d)$	28.8(6.6)	

4% systematic error of B_K is now smaller than 10% error due to $|V_{cb}|^4$ in ϵ_K

CKM unitarity with lattice inputs 2011

First row unitarity holds to 0.1% accuracy 0 $\sum |V_{ij}^2| - 1$ V_{ud} V_{us} V_{ub} 0.97425 0.22540.00342 0.0000 ± 0.00022 ± 0.0009 ± 0.00037 ± 0.0006 B->pi HFAG + Nuclear transitions K-> pi reviewed by Nf=2+1 lattice OCD Hardy-Towner Lubic at LP11 FNAL/MILC, HPQCD Lattice'08 ArXiv 0812.12.02

• Second row unitarity still requires much improvement

Quenched calculation with domain-wall quark action: RBC Collaboration, T. Blum et al, PRD68, 114506 (2003) CP-PACS Collaboration, J. Noaki et al, PRD68, 014501 (2003)

- Failure of the previous lattice calculation (2003) indicates
 - Inadequacies of Quenched approximation

 Failure of SU(3) chiral perturbation theory

 Steady progress since then due to heroic effort by RBC

Going beyond particle physics – a trial with Helium nuclei –

What should be the focus?

- Over half a century of nuclear physics has been based on effective theory of nucleons and mesons adapted to natural nuclei
 - 1934 Pion as origin of nuclear force H. Yukawa
 - 1949 shell model of nuclei Jansen-Meyer
- Limitations of this approach manifest themselves in a number of ways;
 - Purely phenomenological nuclear potentials describe, but do not explain, data, e.g., hard core
 - Uncertain reliability to discuss unnatural nuclei with large/small neutron/proton ratio
 - Impossible to explore what will happen if QCD parameters are different from what they are...

Two appoaches to Nuclear physics from lattice QCD

 Nuclear properties from nuclear potentials extracted from lattice QCD

> N. Ishii, S. Aoki, T. Hatsuda, PRL 99, 022001 (2007)

 Direct calculation of nuclear properties from quarks and gluons

T. Yamazaki, Y. Kuramashi, A. ukawa, PRD81, 111504 (2010)

A trial with Helium nuclei

- First "real" nuclei and a large binding energy (easiest of the lot?)
- First and foremost issue to address:
 "Is the system of 2 protons and 2 neutrons a bound state?"
- o Use standard lattice methods
 - Extraction of energy difference from helium correlation function

$$\frac{\langle He(t) \cdot He(0) \rangle}{\langle p(t) \cdot \overline{p}(0) \rangle^2 \langle n(t) \cdot \overline{n}(0) \rangle^2} \xrightarrow{t \to \infty} \exp\left(-\left(m_{He} - 2m_p - 2m_n\right)t\right)$$

Finite volume studies to distinguish if bound state or scattering state

 ΛH

- Reduction using
 - symmetries
 - o neutron ⇔proton, neutron ⇔ neutron in He operator
 - o Ispspin: all proton ⇔ all neutron
 - Calculate two contractions simultaneously
 - o up ⇔ up in proton or down ⇔ down in neuron
 - Further reduction using blocks of three quark propagators

$$q(\vec{x}) = A \cdot \exp(-Br) \qquad \frac{S_1 \quad S_2 \quad L}{(A,B) \quad (0.5,0.5) \quad (0.5,0.1) \quad 24} \\ (A,B) \quad (0.5,0.5) \quad (1.0,0.4) \quad 48,96$$

- Negative energy difference in three volumes
- o Small volume dependence
- Non-zero intercept at 1/L^3=0 suggests a bound state

The Japanese 京"K" Supercomputer Project

"K" supercomputer project

- Japanese national project to develop a 10 Pflops system
 - 1京=10 Peta in the Japanese counting system
- Project period
 - Japanese FY 2006 to 2012
- Project budget
 - 115.4 B¥ (about 1B Euro)
- Institution responsible for the computer R&D

Schedule of the Project

Big jolt in November 2009

			:			:	:	
		FY2006	FY2007	FY2008	FY200	FY2010	FY2011	FY2012
System		Concep desig			Prototype, evaluation		on, installation, djustment	Tuning and improvement
Buildings	Computer building		Design	:	struction	1		
	Research building			Design Con				

November 2009

reexamination of FY2010 budget by People's Democratic Party recommends *freezing of the Supercomputer Project* ; many science & technology budget also recommended cut.

Late November-early December:

appeals by many academic communities against the reccomendation 16 December

Government decides to proceed with the Project

A happy news! "K" computer was No. 1 in June 2011 Top500 supercomputer list

- Announced on 20 June at ICCS2011 at Hamburg, Germany
- System parameters at the time
 #nodes 64,512 nodes (about 80% of full system)
 - Peak speed 8.774 Pflops

Courtesy: RIKEN AICS

54

- o Linpack performance
 - sustained 8.162 Pflops (93.0% of peak)
 - Problem size 10,725,120
 - Execution time 28.0 hours
 - Power performance 825MFLOPS/W

Cite for the 京"K" Supercomputer

"Advanced Institute for Computational Science" (AICS) in Kobe

- New institute founded in June 2010
- Operates the "K" computer
- Carries out research across computer science and computational science

Computer building

In order to put 京"K" computer to strategic use,

- Government selected 5 strategic fields in science and technology
- For each field, Government selected a *core institute*.
- Each core institute is responsible for organizing research and supercomputer resources in the respective field and its community, for which they receive
 - priority allocation of 京"Kei" resources
 - funding to achieve the research goals
- Project period : JPF2011~2015

Strategic field "Matter and Universe"

- Unified field of particle physics, nuclear physics and astrophysics
- Core institute

- "Federation for computational fundamental science" : virtual federation of
 - o Center for Computational Science, Univ. of Tsukuba
 - High Energy Accelerator Research Organization (KEK)
 - o National Astronomical Observatory (NAO)
- o Leadership: next-generation is taking the lead
 - Leader Sinya Aoki(Tsukuba)
 - o Subleaders
 - Jun-ichiro Makino (NAO) research planning Shoji Hashimoto (KEK) organization
- Lattice QCD is a main emphasis of the field

Eastern Japan Great Earthquake and computational science; somber realization and grave responsibility
Lattice QCD as a precision vehicle to understand hadrons and nuclei
Japanese status toward Peta and post-Peta scale computational science with

lattice QCD as an important comonent