

Requirements definition at ESA: practices, challenges and emerging processes

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

About me

Requirements Engineering in Context

> SYSTEMS ENGINEERING FUNCTIONS (ECSS-E-ST-10C)

Alvai

> NASA SYSTEMS ENGINEERING HANDBOOK

3

Space Systems developments evolving

• esa

Space landscape changing rapidly:

💶 💶 🕂 📲 🛄 📲 🔚 🔚 🔤 🚛 🚳 🖿 📲 🔤 👘

COSMIC OBSERVERS

SOLAR SYSTEM EXPLORERS

The mission architecting process

- Requirements definition is (should be) User Centric.
- Assessment should identify minimum set of needs to be covered for the system to provide a <u>value</u>

Challenge – Understand what is needed by user

What we want to achieve

Requirements Engineering Process

Detection elements quantum efficiency and noise

Etc....

12

Nature of users changes depending on the application

Requirements Elicitation

- Final user defines the *needs/objectives:* expressed in science terms
- User often has an identified **technique and observable** to achieve those needs
- These top-level needs should be agnostic from specific design implementation or architecture
 - In practice, users bring in past projects/experience on the needs:
 - Potentially to hide real objectives
 - Introduction of unnecessary constraints

Systems Engineering most important task in early phases:

Validate the requirements:

"Is this what we need?" / "Will we build the right thing?"

User needs and requirements

____ ■ ■ 🚛 💶 🛶 ■ 🚛 🚛 ■ ■ 🔚 🔜 🛻 🔤 🛶 🚳 🌬 📲 🛨 🔤 📾 🕮 🕍 → THE EUROPEAN SPACE AGENCY

User needs / requirements examples: JWST

The JWST Science Themes

→ THE EUROPEAN SPACE AGENCY

The scientific objectives of the JWST:

- Level 1 Baseline Science Requirements- JWST shall

<u>JWST-L1.1</u>: Measure the space density of galaxies to a 2µm flux density limit of $1.0x10^{-34}$ Wm⁻²Hz⁻¹ via **imagery** within the 0.6 to 27 µm spectral band to enable the determination of how this density varies as a function of their age and evolutionary stage.

<u>JWST-L1.2</u>: Measure the **spectra** of at least 2500 galaxies with spectral resolution of approximately 100 (over 0.6 to 5µm) and 1000 (over 1 to 5µm) and to a 2µm emission line flux limit of 5.2x10⁻²² Wm⁻² to enable determination of their redshift, metallicity, star formation rate, and ionization state of the intergalactic medium.

<u>JWST-L1.3</u>: Measure the physical and chemical properties of young stellar objects, circumstellar debris disks, extra-solar giant planets, and Solar System objects via **spectroscopy**, and **imagery** within the 0.6 to 27µm spectral band to enable determination of how planetary systems form and evolve.

High level **functional** and **performance** requirements expressed to be further detailed and flow-down at Level 2 considering a mission architecture.

User needs / requirements examples: PLATO

PLAnetary Transits and Oscillations of stars (PLATO) is a mission to detect and characterise exoplanets and study their host stars

Focus on <u>Earth-size planets in orbits up to the habitable</u> <u>zone of bright Sun-like stars</u> to address 3 main questions:

- 1. How do planets and planetary systems form and evolve?
- 2. Is our Solar system special or are there other systems like ours?
- 3. Are there potentially habitable planets?

💻 🔜 🛃 🔚 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🚳 🍉 📲 🚼 🖬 🖬 📾 📾 🐏 🍁 🔹 The European space agenc

User needs / requirements examples: PLATO

= ____ 🖬 🚛 💻 🛶 💵 🔚 🔚 🔚 🔚 🔚 🔚 🚛 🚳 🍉 📲 🚼 🛨 📰 📾 🐏 🏜 🝁 🔹 → The European space agency

User needs / requirements examples: PLATO

Other mission Requirement Sources

Other mission Requirement Sources

Project Constraints:

- Maximum Cost
- Maximum development duration
- Launch date
- Technology maturity (TRL level)
- Risk exposure index

Policy/Agency Constraints:

- Use of European launcher
- International collaboration needs
- Funding model: consortium, georeturn, etc

Regulations and Standards:

- Debris mitigation
- Material limitations

Middle-out Engineering:

- Reuse of existing hardware / SW

A few commonly encountered requirements pitfalls:

- > Inadequate early requirement validation
- > "Blind reuse" of requirements between projects
- > Lack of requirements **justification** and traceability / linkage
- > Lack of requirements **priorization**
- Build-up of conservatism across requirement / specification layers leading to overdesign.
- > Lifecycle phasing differences

Ensure requirements are "well written"

- VALID" requirement:
 - - Verifiable
 - - Achievable
 - Logical
 - - Integral
 - Definitive

Maintain Traceability

- Link related requirements.
- Few top-level needs translate in 1000s of requirements at lower levels
- Key for problem resolution

Document justification

- Know why requirements are in place
- Document logic for every number selected even if it is a guess, write-it.

THE EUROPEAN SPACE AGENCY

... understand where reqs come from

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🔄 📲 🗮 📥 🚳 🛌 📲 🔜 🖬

Common Problem in Scientific Instrument Lifecycle:

Different life-cycles scheduling between Spacecraft System and Instrument development.

>Can lead to (costly) late changes in the instrument design

FIGURE 2.5-1 Life-Cycle Cost Impacts from Early Phase Decision-Making

> SOURCE: NASA ENGINEERING HANDBOOK

> EXAMPLE ANALYSIS ON REQUIREMENTS EVOLUTION FOR JWST MIRI INSTRUMENT

"New" Engineering Processes

ESA UNCLASSIFIED - For ESA Official Use Only

= = = • • THE EUROPEAN SPACE AGENCY

Digitization & MBSE: motivations and ESA approach

Basic need for digitization of Systems Engineering practices:

> Manage large amounts of (complex) information

- Maintain coherent repository(ies) for information / data
- Record nature of information / data relationships
- Maintain traceability and data continuity across engineering domains.
- Allow adequate access to users to <u>common</u> and <u>coherent</u> data sets

"Get the **right** information, at the **right** time to the **right** people"

Digitization & MBSE: motivations and ESA approach

"Model Based Systems Engineering" (MBSE) term used loosely to refer to different aspects : digitalization concept, processes, tools, etc.

The definition of MBSE we adopt:

- > Framework to represent complex systems.
- > Model centric approach to data and information management providing unambiguous source-of-truth
- Data models defined to create digital representation of (space) mission elements and their interdisciplinary relationships.
- > Part of extended digital engineering approach allowing data continuity across:
 - > Disciplines
 - Project life-time
 - Supply chain

But we are not there yet...

💳 🔜 📲 🚍 💳 🛶 📲 🧮 📰 📲 🔚 📲 🚍 🛻 🚳 🍉 📲 👫 💶 🚥 🕸 🏎 🚱

MBSE at ESA

Several ESA missions embraced MBSE approaches already at different project phases

+

→ THE EUROPEAN SPACE AGENCY

31

MBSE at ESA

💳 🔜 🖬 🚍 💳 🕂 📲 🧮 🔚 📲 📥 👘 🛌 👘 🛌 👘 🐂 🖬 🖬 👘 🔶 🖬

MBSE Enablers

Toolsets becoming more user friendly

PLATO MBSE Architecture

→ THE EUROPEAN SPACE AGENCY

Agile Systems Engineering

Agile methodologies widely used for Software projects development.

• Development broken down into 'features' incrementally incorporated and validated in dedicated Sprints.

Approach extended to manage team activities and tasks in HW/SW development

 \gg Would be glad to exchange over coffee/lunch break $_{\scriptscriptstyle 35}$