Hadron scattering, resonances and exotics from lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Berlin, Germany 20 January 2025

Intriguing observations, e.g. X(3872), Y(4230), $Z_c^+(4430)$, $Z_c^+(3900)$, X(6900), $T_{cc}(3875)$, $D_{s0}(2317)$, $T_{cs}(2900)$, Z_b^+ , light scalars, $\pi_1(1600)$ [J^{PC} = 1⁻⁺], P_c , Roper, other baryon resonances

Intriguing observations, e.g. X(3872), Y(4230), $Z_c^+(4430)$, $Z_c^+(3900)$, X(6900), $T_{cc}(3875)$, $D_{s0}(2317)$, $T_{cs}(2900)$, Z_b^+ , light scalars, $\pi_1(1600)$ [J^{PC} = 1⁻⁺], P_c , Roper, other baryon resonances

Intriguing observations, e.g. X(3872), Y(4230), $Z_c^+(4430)$, $Z_c^+(3900)$, X(6900), $T_{cc}(3875)$, $D_{s0}(2317)$, $T_{cs}(2900)$, Z_b^+ , light scalars, $\pi_1(1600)$ [J^{PC} = 1⁻⁺], P_c , Roper, other baryon resonances

particularly interesting, can't be just $\overline{q}q$, e.g. flavour or J^{PC} = 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻

Intriguing observations, e.g. X(3872), Y(4230), $Z_c^+(4430)$, $Z_c^+(3900)$, X(6900), $T_{cc}(3875)$, $D_{s0}(2317)$, $T_{cs}(2900)$, Z_b^+ , light scalars, $\pi_1(1600)$ [J^{PC} = 1⁻⁺], P_c , Roper, other baryon resonances

- Introduction
- Some examples of recent HadSpec work:
 - T_{cc} and T_{cc} in coupled DD^* , D^*D^* scattering
 - Scalar and tensor charmonium resonances
 - $[DK/\pi \text{ scattering} \text{dependence on } m_{\pi}]$
- Summary

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

$$=\sum_{n}\frac{e^{-E_{n}t}}{2 E_{n}}\langle 0|\mathcal{O}_{i}(0)|n\rangle\langle n|\mathcal{O}_{j}^{\dagger}(0)|0\rangle$$

Lower-lying hadrons in each flavour sector are well determined (including isospin breaking, QED).

 C_i

5

Finite-volume energy eigenstates from:

Excited states: in each symmetry channel compute matrix of correlators for **large bases of interpolating operators** with appropriate variety of structures.

Variational method (generalised eigenvalue problem) $\rightarrow \{E_n\}$

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)} \quad \lambda^{(n)}(t) \sim e^{-E_n(t-t_0)}$$
$$v_i^{(n)} \to Z_i^{(n)} \equiv \langle 0|\mathcal{O}_i|n\rangle \qquad \Omega^{(n)} \sim \sum_i v_i^{(n)}\mathcal{O}_i$$

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$det \left[1 + i \ \rho(E_{Cm}) t(E_{Cm}) \left(1 + i \mathcal{M}^{\vec{P}}(E_{Cm}, L) \right) \right] = 0$$

Infinite-volume
scattering *t*-matrix
Effect of finite volume
(including reduced syn

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det\left[1+i\,\rho(E_{\rm Cm})t(E_{\rm Cm})\left(1+i\mathcal{M}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det\left[1+i\,\rho(E_{\rm Cm})t(E_{\rm Cm})\left(1+i\mathcal{M}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms (*K*-matrix forms, ...) [see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det\left[1+i\,\rho(E_{\rm Cm})t(E_{\rm Cm})\left(1+i\mathcal{M}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms (*K*-matrix forms, ...)

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

Demonstrated in calcs. of ρ , light scalars, b_1 , charm mesons, ...

The ρ resonance in $\pi\pi$ scattering

$$(J^{PC} = 1^{--}, I = 1)$$

Experimentally $BR(\rho \rightarrow \pi \pi) \sim 100\%$

 $(J^{PC} = 1^{--}, I = 1)$

Experimentally $BR(\rho \rightarrow \pi\pi) \sim 100\%$

Use many different operators $\bar{\psi} \Gamma D \dots \psi$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) \pi(\vec{p_1}) \pi(\vec{p_2})$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) K(\vec{p_1}) \bar{K}(\vec{p_2})$

built from optimised $\pi \& K$ ops

Wilson *et al* (HadSpec) [PR D92, 094502 (2015)] and Dudek, Edwards, CT (HadSpec) [PR D87, 034505 (2013)]

Anisotropic lattices, $a_s/a_t \approx 3.5, a_s \approx 0.12$ fm, $L \approx 4$ fm ($m_{\pi} L \approx 4$)

 $N_f = 2+1,$ Wilson-clover fermions, $m_\pi \approx 236$ MeV

Used *distillation* to compute correlation fns. [PR D80 054506 (2009)]

The ρ resonance in $\pi\pi$ scattering

 $(J^{PC} = 1^{--}, I = 1)$

Experimentally ${\sf BR}(
ho o \pi\pi) \sim 100\%$

Use many different operators $\bar{\psi} \Gamma D \dots \psi$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) \pi(\vec{p_1}) \pi(\vec{p_2})$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) K(\vec{p_1}) \bar{K}(\vec{p_2})$

built from optimised $\pi \& K$ ops

Wilson *et al* (HadSpec) [PR D92, 094502 (2015)] and Dudek, Edwards, CT (HadSpec) [PR D87, 034505 (2013)]

8

The ρ resonance: **elastic** $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **elastic** $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **elastic** $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)] 1

T_{cc}^+ seen in $D^0 D^0 \pi^+$ at LHCb [2109.01038, 2109.01056] Close to DD^* threshold, J^P=1⁺, I=0, **exotic flavour** (cc $\overline{u}\overline{d}$)

T_{cc}^+ seen in $D^0 D^0 \pi^+$ at LHCb [2109.01038, 2109.01056] Close to DD^* threshold, J^P=1⁺, I=0, **exotic flavour** (cc $\overline{u}\overline{d}$)

What about higher energies (coupled DD^* , D^*D^*)?

Other lattice calcs:

- Padmanath & Prelovsek
 [2202.10110, PRL];
- Chen *et al* [2206.06185, PLB];
- Lyu *et al* (HAL QCD) [2302.04505, PRL];
- Collins *et al* [2402.14715, PRD];
- Meng *et al* [2411.06266]; See also:
- Du et al [2303.09441, PRL];
- Meng *et al* [2312.01930, PRD].
- Gil-Domínguez & Molina [2409.15141].
- Dawid *et al* [2409.17059, JHEP].

```
First lattice QCD calculation of coupled DD^*, D^*D^* scattering
```

```
m_{\pi} \approx 391 \text{ MeV} (D^* \text{ is stable}),
3 lattice volumes (L \approx 2 - 3 \text{ fm})
```

```
Use many meson-meson-like DD^* and D^*D^* ops (I = 0) with optimised D, D^* ops
```

First lattice QCD calculation of coupled DD^* , D^*D^* scattering

 $m_{\pi} \approx 391 \text{ MeV} (D^* \text{ is stable}),$ 3 lattice volumes ($L \approx 2 - 3 \text{ fm}$)

Use many meson-meson-like DD^* and D^*D^* ops (I = 0) with optimised D, D^* ops

[Whyte, Wilson, Thomas (HadSpec), 2405.15741]

[2405.15741]

Use 109 energy levels

[2405.15741]

Coupled DD^* , D^*D^* scattering

Partial wave amplitudes for
$$J^P = 1^+$$
:
 $DD^* l = 0, 2; S = 1$
 $D^*D^* l = 0, 2; S = 1$
and 'background' partial waves

[2405.15741]

Coupled DD^* , D^*D^* scattering

Partial wave amplitudes for
$$J^P = 1^+$$
:
 $DD^* \ l = 0, 2; S = 1$
 $D^*D^* \ l = 0, 2; S = 1$
and 'background' partial waves

K-matrix param. – respects unitarity (conserve prob.) and flexible

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s) \qquad \text{Im}[I_{ij}(s)] = -\delta_{ij}\rho_i(s)$$
$$\rho_i(E_{\text{cm}}) = \frac{2k_i}{E_{\text{cm}}}$$

In this work
$$K(s)_{\ell SJa,\ell'S'Jb} = \sum \gamma_{\ell SJa,\ell'S'Jb}^{(n)} s^n$$
,

[2405.15741]

T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering

[2405.15741]

T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering

prediction of new state

[2405.15741]

T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering

[2405.15741]

Effect of left hand cut from π exchange (~18 MeV below DD^* thresh)?

Experimental situation:

• Ground state $\chi_{c0}(1P)(0^{++})$ and $\chi_{c2}(1P)(2^{++})$ below $D\overline{D}$ threshold. Above that it is less clear...

Experimental situation:

- Ground state $\chi_{c0}(1P)$ (0⁺⁺) and $\chi_{c2}(1P)$ (2⁺⁺) below $D\overline{D}$ threshold. Above that it is less clear...
- $\chi_{c0}(3860) \rightarrow D\overline{D}$ (Belle). Not seen in $B^+ \rightarrow D^+D^-K^+$ (LHCb). Theoretical reanalyses: may be from pole below $D\overline{D}$ thresh.
- $\chi_{c0}(3930) \rightarrow D\overline{D}$ (LHCb)
- $\chi_{c0}(3960) \rightarrow D_s \overline{D}_s$ (LHCb)
- $X(3915) \rightarrow J/\psi\omega$ (Belle)
- $\chi_{c2}(3930) \rightarrow D\overline{D}$ (Belle, BABAR, LHCb)

Charmonium 0⁺⁺ and 2⁺⁺ resonances

 $m_{\pi} \approx 391 \text{ MeV},$ 3 lattice volumes ($L \approx 2 - 3 \text{ fm}$) No $c - \overline{c}$ annihilation.

Use many fermion-bilinear ($\overline{c} \Gamma D \dots c$) and meson-meson-like ops ($\eta_c \eta, D\overline{D}, \eta_c \eta', D_s \overline{D}_s, D\overline{D}^*, D_s \overline{D}_s, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $D_s \overline{D}_s^*, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $\chi_{c0,2}\sigma, \dots$)

First 'complete' lattice study of this energy region.

[Wilson, Thomas, Dudek, Edwards (HadSpec), 2309.14070 (PRL), 2309.14071 (PRD)]

Charmonium 0⁺⁺ and 2⁺⁺ resonances

 $m_{\pi} \approx 391 \text{ MeV},$ 3 lattice volumes ($L \approx 2 - 3 \text{ fm}$) No $c - \overline{c}$ annihilation.

Use many fermion-bilinear ($\overline{c} \Gamma D \dots c$) and meson-meson-like ops ($\eta_c \eta, D\overline{D}, \eta_c \eta', D_s \overline{D}_s, D\overline{D}^*, D_s \overline{D}_s, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $D_s \overline{D}_s^*, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $\chi_{c0,2}\sigma, \dots$)

First 'complete' lattice study of this energy region.

[Wilson, Thomas, Dudek, Edwards (HadSpec), 2309.14070 (PRL), 2309.14071 (PRD)]

Charmonium 0⁺⁺ and 2⁺⁺ resonances

Use more than 200 energy levels

Scattering amplitudes

 $\begin{array}{ll} 0^{++} & \eta_c \eta, D\bar{D}, \eta_c \eta', D_s \bar{D}_s, \psi \omega, D^* \bar{D}^*, \psi \phi \{ {}^{1}S_0 \} \\ 2^{++} & \eta_c \eta, D\bar{D}, [\eta_c \eta'], D_s \bar{D}_s \{ {}^{1}D_2 \}; D\bar{D}^*, [D_s \bar{D}_s^*] \{ {}^{3}D_2 \} \\ & \psi \omega, D^* \bar{D}^*, \psi \phi \{ {}^{5}S_2 \} \\ 3^{++} & D\bar{D}^*, \psi \omega, D_s \bar{D}_s^*, \psi \phi \{ {}^{3}D_3 \}; [\eta_c \sigma \{ {}^{1}F_3 \}] \\ & \psi \omega, D^* \bar{D}^*, [\psi \phi, D_s^* \bar{D}_s^*] \{ {}^{5}D_3 \} \end{array}$

and 'background' 1⁻⁺, 2⁻⁺, 3⁻⁺ amplitudes

Scattering amplitudes

$$K_{ij} = \sum_{p} \frac{g_{i}^{(p)}g_{j}^{(p)}}{m_{p}^{2} - s} + \sum_{a} \gamma_{ij}^{(a)}s^{a}$$

$$J^{P} = 2^{+}$$

$$\begin{split} a_t m &= (0.7025 \pm 0.0012 \pm 0.0007) \\ g_{D\bar{D}^*} {}^3_{D_2} = (-37.9 \pm 5.0 \pm 3.94) \cdot a_t \\ g_{D_s \bar{D}_s} {}^1_{D_2} &= (-33. \pm 4.3 \pm 2.5) \cdot a_t \\ g_{D^* \bar{D}^*} {}^1_{S_2} = (-3.3 \pm 4.3 \pm 2.5) \cdot a_t \\ g_{D^* \bar{D}^*} {}^1_{S_2} = (1.58 \pm 0.15 \pm 0.22) \cdot a_t^{-1} \\ \gamma_{\eta_c \eta} {}^1_{D_2} {}_{\rightarrow \eta_c \eta} {}^1_{D_2} = (16.3 \pm 23.1 \pm 7.5) \cdot a_t^4 \\ \gamma_{D\bar{D}} {}^1_{D_2} {}_{\rightarrow \eta_c \eta} {}^1_{D_2} = (-81 \pm 129 \pm 100) \cdot a_t^4 \\ \gamma_{\psi \omega} {}^5_{S_2} {}_{\rightarrow \psi \omega} {}^5_{S_2} = (0.55 \pm 0.72 \pm 0.81) \\ \gamma_{\psi \phi} {}^5_{S_2} {}_{\rightarrow \psi \phi} {}^5_{S_2} = (2.19 \pm 0.77 \pm 0.11) \\ g_{D\bar{D}} {}^1_{D_2} {}_{2} = 10 \cdot a_t \text{ (fixed)} \\ \chi^2 / N_{\text{dof}} = \frac{62.8}{86-8-23} = 1.14 \,, \end{split}$$

$$J^{P} = 0^{+} \qquad \begin{array}{c} a_{t}m = (0.7065 \pm 0.0015 \pm 0.004) \\ a_{t}g_{D\bar{D}}[^{1}S_{0}] = (0.1174 \pm 0.0226 \pm 0.0039) \\ a_{t}g_{D\bar{D}}[^{1}S_{0}] = (0.189 \pm 0.046 \pm 0.026) \\ a_{t}g_{\psi\psi}[^{1}S_{0}] = (-0.127 \pm 0.069 \pm 0.230) \\ a_{t}g_{D^{*}\bar{D}}[^{*}(1S_{0})] = (0.330 \pm 0.095 \pm 0.023) \\ \gamma_{cn}[^{1}S_{0}] \rightarrow n_{c}n[^{1}S_{0}] = (0.144 \pm 0.097 \pm 0.038) \\ \gamma_{D\bar{D}}[^{1}S_{0}] \rightarrow n_{c}n[^{1}S_{0}] = (-0.974 \pm 0.301 \pm 0.027) \\ \gamma_{\psi\psi}[^{1}S_{0}] \rightarrow \psi\psi[^{1}S_{0}] = (1.36 \pm 0.90 \pm 0.26) \\ \gamma_{\psi\psi}[^{5}D_{4}] \rightarrow \psi\psi[^{5}D_{4}] = (162 \pm 254 \pm 43) \cdot a_{t}^{8} \end{array}$$

$$\chi^2 / N_{\rm dof} = \frac{91.0}{90 - 10 - 16} = 1.42 \,,$$

(Constrain 3⁺⁺, 1⁻⁺, 2⁻⁺, 3⁻⁺ separately and use as inputs here)

[2309.14070, 2309.14071]

 $\mathbf{2}$

0⁺⁺ and 2⁺⁺ scattering amplitudes

0⁺⁺ scattering amplitudes

2⁺⁺ scattering amplitudes

Charmonium 0⁺⁺ and 2⁺⁺ resonances

$\underline{m/MeV}_{4050}$ 3900 3800 3850 3950 4000 $m = \text{Re}\sqrt{s_0} \approx 3995(14) \text{ MeV}$ 20 $c_i/{\rm MeV}$ $\Gamma = -2 \operatorname{Im} \sqrt{s_0} \approx 67(38) \text{ MeV}$ 730(320)470(470)40 530(160)60 $\Gamma_{D\bar{D}} \approx 23(13) \,\mathrm{MeV}$ $^{80} \vdash \Gamma_{D_s \bar{D}_s} \, \approx \, 28(26) \, \mathrm{MeV}$ $\Gamma_{\psi\omega} \approx 9(^{+18}_{-9}) \,\mathrm{MeV}$ $D\bar{D}$ $D_s \bar{D}_s$ $\psi \omega$ $D^*\bar{D}^*$ 0^{++} Γ/MeV $t_{ij} \sim \frac{c_i c_j}{(s_0 - s)}$

Charmonium 0⁺⁺ and 2⁺⁺ resonances

Charmonium 0⁺⁺ and 2⁺⁺ resonances

- Only one 0^{++} and one 2^{++} resonance up to \approx 4100 MeV.
- No large scattering amps in channels with $\bar{c}c$ + light meson (OZI)
- Above ground state χ_{c0} no other 0⁺⁺ bound states or near-DD̄ / D_sD̄_s threshold resonances.
 c.f. claims for an additional χ_{c0}(3860) by Belle [1704.01872], lattice calculation by Prelovsek *et al* [2011.02542], some models and some reanalysis of experimental data.
- (Also bound state in 2⁻⁺ and narrow resonance in 3⁺⁺.)

[HadSpec, 1607.07093, 2008.06432, 2102.04974, 2403.10498]

DK/π – dependence on m_{π}

Summary

- A few examples of recent lattice QCD calculations of charm/charmonium(-like) mesons.
 - T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering.
 - Scalar (0⁺⁺) and tensor (2⁺⁺) charmonium resonances (only one of each in energy region investigated).
 - $[DK/\pi \text{ at SU(3)}_{F} \text{ sym. point and dependence on } m_{\pi}]$
- Many other calcs, e.g. π_1 (exotic $J^{PC} = 1^{-+}$), light scalars.
- Study evolution as vary light-quark masses.
- Effect of left hand cut?
- Three (or more!?) hadron scattering.
- Probe structure, e.g. transitions and form factors.

Science and Technology Facilities Council

www.hadspec.org

 $m_{\pi} \approx 400 \text{ MeV}$

DiRAC