

Three years of DMA-ST2 "The Digital Scientific Method"

Achievements, Lessons learned, Future plans – A personal perspective

Mission Statement

DMA-ST2: The Digital Scientific Method

DMA-ST2 develops and maintains a toolbox of

- highly scalable,
- interoperable,
- and community driven
 open-source software packages to enable
- leading edge simulations and
- data analysis methods.

Common Interests

Different Domains/Applications, similar Methods

Next generation computing for simulation & analysis

- fast changing compute platforms
- highly scalable software required

Complex data analysis & data fusion

- online reconstruction/data reduction
- automated and/or in-situ

Applications of Machine Learning

- faster convergence of iterative methods
- surrogate models

Knowledge Extraction & Data Reduction

• keeping the "right" <1%

High Throughput Transport

- solutions for short/medium/long range transport
- provide good data formats

Planned steps

ST2 Milestones

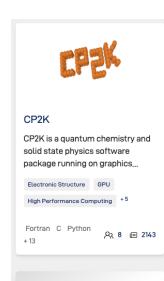
Make methods/software visible

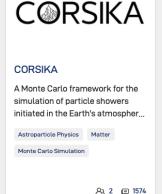
• DMA-7: Provision of a directory of interconnectable software packages including examples to cover the whole simulation and experiment life cycle

Make methods/software accessible/exchangeable

 DMA-8: Integration of near-real-time/online data analysis solutions for extreme scale data into the software toolbox of DMA

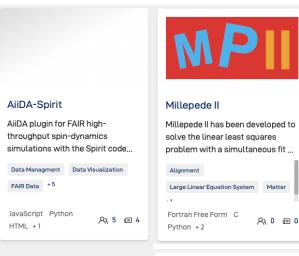
Connecting to the other STs

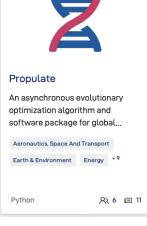

 DMA-9: Integration of surrogate models into simulation of multisource, multimodal experiment setups

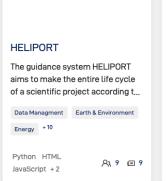


First realizations: A multitude of software (incomplete list)

Collaboration via knowledge exchange not so much code exchange

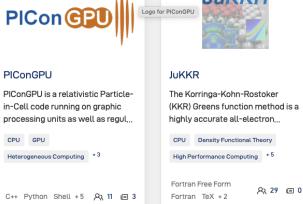



C++ CMake C +2



Python Vue HTML +2 2 4 1 7







HELIPORT

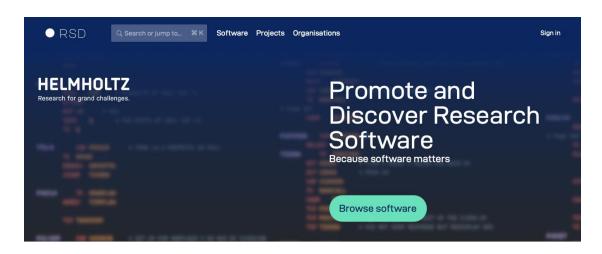
८२ 18 🔳 8

Contributing to and benefitting from community projects

Connecting DMA with EOSC and HIFIS

DMA Software directory as part of larger efforts

- ESCAPE-OSSR: provides a very good curation workflow, actual directory is a repository (https://zenodo.org/communities/escape2020/search?q=&type=software)
- HIFIS Research Software Directory: highly flexible software directory, but (currently) no curation (https://helmholtz.software)


Current work:

- Combine workflows from both to onboard software into DMA "community" of RSD
- Then export this part of RSD to https://helmholtz-dma.de website

Helmholtz Research Software Directory

Aim and benefits

Latest news

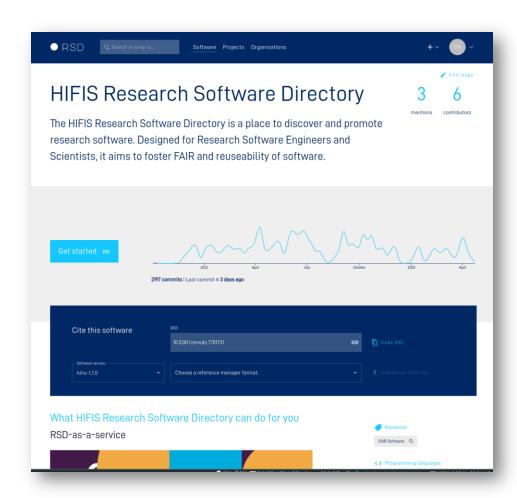
https://helmholtz.software

- Online service to collect and present software in an academic context
- For Research Software Engineers
 - Show impact their software has in research
 - Show relations to organisations, research projects and other software
 - Guide visitors to codebase
- For Researchers
 - Discover software they need in their research field
 - Get help for citing code they use
- For Organisations
 - · Keep track of software
 - Metrics and evaluation

RSD Data sources

Authentication

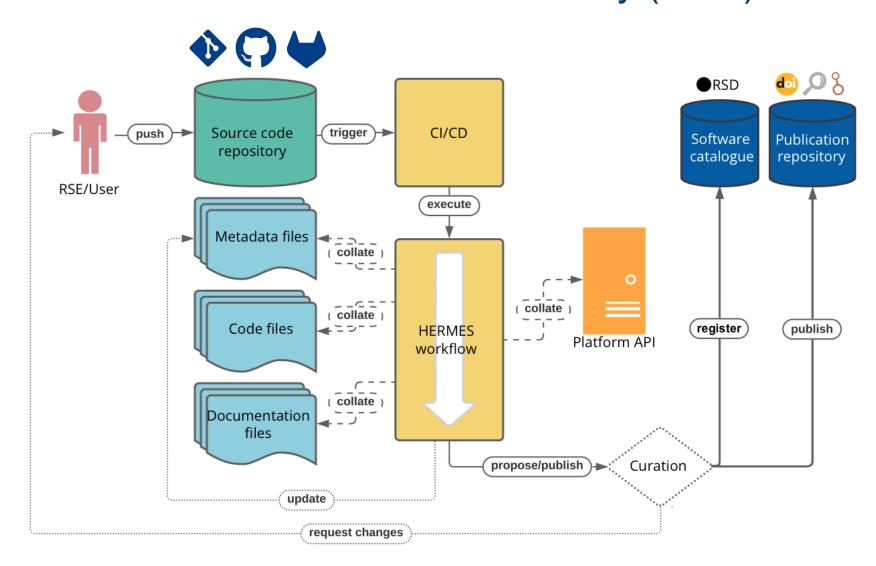
Code information

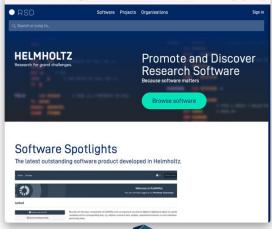


Organisations

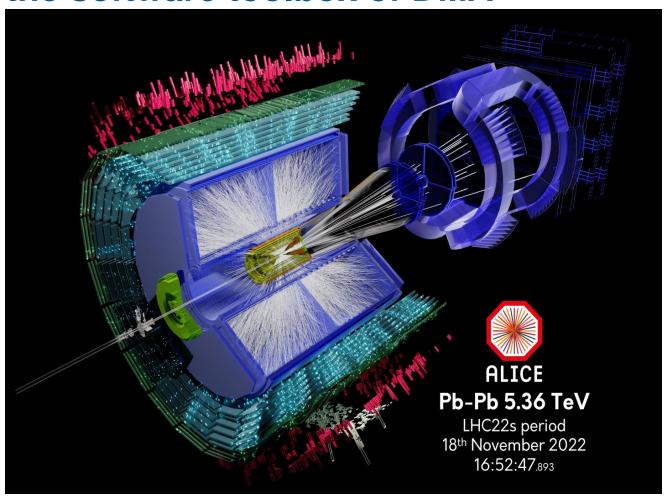
Contributors

References




The HERMES Workflow

...with Research Software Directory (RSD) Extension



DMA-8: Integration of near-real-time/online data analysis solutions for extreme scale data into the software toolbox of DMA

The software tools developed at the GSI within the DMA ST2 Activities has been used to deploy and control ~70000 tasks on 2200 GPUs and about 20000 CPUs in the online farm directly connected to the ALICE detector. Slurm plugin developed within the ODC software allows deploying on any Slurm-controlled clusters to be used later by the GSI/FAIR experiments and MT-DMA communities with similar huge demands on data rates

Data-parallel Types for C++

GCC implementation fully usable and documented on cppreference.com

Tutorial on std::experimental::simd at "using std::cpp 2023"

Design approval of std::simd for C++26

Collaboration with Intel on adding more features to simd in C++26

CppCon 2023 presentation

CppCast interview

Exchanging tools and methods on all levels

Lessons learned

Basic software engineering

- Abstracting fast changing/varying hardware components
 - Heterogeneous hardware (e.g. Alpaka)
 - SIMD (Vc → lead to std::simd, now part of C++)
- Committee/Community work
 - C++
 - GCC
 - OpenACC
 - OpenPMD
- Automate testing/packaging
 - Use HIFIS https://codebase.helmholtz.cloud CI resources to test everything
 - Even HPC integration now (locally) possible (Jacamar), soon also in Helmholtz Cloud

Research Software Engineering is the new community term

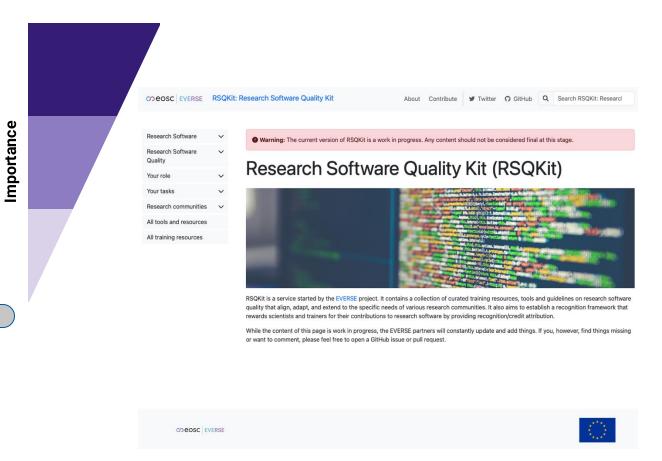
Building even more bridges

DMA creates/contributes to software on all levels

Research software infrastructure

It involves research software that captures more broadly accepted and used ideas, methods and models for use in research, and warrants close researcher involvement in their development.

Prototype tools


It refers to research software that demonstrates a new idea, method or model for use by others outside the project within which it originated, often as a substantive intellectual contribution in its own right and often in the form of a proof of concept.

Analysis code

It includes research software that captures computational research processes and methodology, and often occurs in the context of simulation, data generation, preparation, analysis and visualisation.

Foundational Software

ESCAPE – Latest Developments: Collaboration

Punch4NFDI LoI – OSSR as one area of collaboration:

27 September 2024

ESCAPE Open Collaboration and PUNCH4NFDI Consortium sign landmark Letter of Intent

The ESCAPE Open Collaboration and the PUNCH4NFDI Consortium announce the formal signing of a Letter of Intent.

READ MORE

The road ahead

Transitioning from POF IV to POF V

Strengthening the network

- DMA is not a team, but a loose network of strong pont-to-point connections between highly demanded groups
- Key stakeholders are also in the network beyond direct DMA affiliations

Al models very successful

- Not yet well visible in RSD
- Needs maybe other outlet to integrate?

Avoid too much micro-planning

DMA does great work --> worry about labeling later

