DESY beam test of CMS pixel detectors

Daniel Pitzl, DESY Aleksander Gajos, Cracow Alexey Petrukhin, DESY Fedor Glazov, Hamburg DESY CMS tracker upgrade meeting, 6.9.2011

setup

scans

single runs

summary

DESY II

DESY II test beams

http://adweb.desy.de/~testbeam/

Beam test setup

crossed finger scintillators

> PSI46 test board

D. Pitzl: Pixel beam test

beam

EUDet

telescope

collimator

Beam test setup

beam setup

- Crossed finger scintillators (~1 cm² overlap area) as trigger:
 - Mounted on movable support (x-y stage with step motors, remote)
 - CAEN HV supply (-1700 V) outside in the control hut.
 - NIM trigger logic inside interlock, and mirrored in the control hut.
 - HP trigger delay and level adapter (NIM \rightarrow TTL) in control hut.
 - Up to 7 kHz scintillator coincidence rate (at 2 GeV e⁺).
- PSI46 test board with single-chip sensor:
 - Mounted after EUDet telescope.
 - Keithley bias voltage supply outside in the control hut.
 - Board control and readout via USB from computer inside interlock.
 - LAN connection to a computer outside in the control hut.
- All worked well...

Scintillator position scan

Scintillators on movable support, remote control, ~ 0.2 mm precision

horizontal FWHM ≈ 30 mm

vertical FWHM $\approx 45 \text{ mm}$

Data taking

- FPGA provides a timestamp for each event bycounting 40 MHz clockcycles.
- Typical scintillator coincidence trigger rate:
 - ► ~6.4 kHz.
- Dips:
 - DESY filling DORIS or PETRA.
- Sometimes the FPGA blocks for many seconds or gives garbage data (filtered out offline).

DESY II time structure

- DESY II has 80 ms cycle (12.5 Hz):
 - ramp down
 - fill one bunch from Linac II (e⁻) or PIA (e⁺).
 - ▶ ramp up
 - eject to DORIS or PETRA
 - or ramp down and dump
 - wire target is always in
 - test beam gets rate as long as DESY energy is above magnet setting.

one bunch in DESY II

- FPGA counts 40 MHz clock cycles.
- DESY II circumference is 292.8 m
- DESY II has one bunch:
 - repeats every 0.977
 µs (1.024 MHz)
 - ▶ 1 turn = 39.067 clocks.
- Problem:
 - FPGA clock was not synchronized to DESY
 - Phase of beam to clock was not fixed.

Single event display

- Sample event:
 - 2 GeV tertiary e⁺
 beam
 - Scintillator trigger
 - Pixel chip 8
 - ▶ -90 V bias
 - optimal clock cycle

Pixel hit map

- One run, ~3.5 min
 - Fill test board memory: 60MB
 - ► USB transfer takes another ~2 min
- Chip 8, optimal settings
- Fully illuminated
- Border pixels have double size and rate
- Corner pixels have quadruple size and rate

Pixel hit map

- the same run
- a few dead pixels
- non-uniformity:
 - beam profile,
 - misalignment
 between sensor and
 scintillator,
 - limited trigger region (~1 cm²) just enough to cover 0.8×0.8 cm² chip.

Cluster multiplicity

- Pixel chip triggered by crossed finger scintillators:
 - ► 0.46 clusters/trigger
- Losses:
 - geometric acceptance (trigger area is larger than the pixel chip)
 - wrong timing (clock phase drifts w.r.t. beam)
 - inefficient pixels

Cluster size

Internal gain calibration

- Scan with internal calibrate pulse
- Linear regime above some threshold:
 - fit gain and offset
- Preamp saturation for large pulses
- Repeat for 4160 pixels

Internal gains

chip 8, Vsf 165 DACs

gains

offsets

450 e / large Vcal DAC

Cluster charge

- 2 GeV e+ test beam.
- Pixel detector at verticalincidence, fully depleted(-90V bias).
- No magnetic field.
- Test pulse gain calibration applied.
- Foot of small pulses:
 - wrong timing?
- Peak at 26 ke, OK for MIPs in 285 µm silicon.
- Hump: saturation.
- Tail: multi-pixel clusters.

Cluster charge: Ru source vs beam

- Chip 8, -90V bias, Vthr 100
- 2 GeV e+ test beam:
 - Minimum ionizing particles
- Ru 106 source:
 - long tail of stronger ionizing electrons (not fully relativistic).

Cluster charge

- 2 GeV e+ test beam.
- Pixel detector at vertical incidence, fully depleted (-90V bias).
- No magnetic field.
- Test pulse gain calibration applied.
- Chip 8, column 12.
- Fit by Moyal function:
 - analytic approximation of the Landau integral.
 - suffers from foot and hump in data.

Cluster charge map

- 2 GeV e+ test beam.
- Pixel detector at vertical incidence, fully depleted (-90V bias).
- No magnetic field.
- Test pulse gain calibration applied.
- Trend across the chip
 - test pulse problem?
- Quite uniform along one column.

- 2 GeV e+ test beam.
- Pixel detector at vertical incidence, fully depleted.
- Test pulse gain calibration applied.
- Moyal fit to each column.
- Expect ~25 ke from 285
 µm silicon.
- Observe ~8% gain
 variation across the chip:
 - test pulse problem?
 - check with X-ray source!

scans

- 2 GeV e⁺ beam from DESY II
- scintillator trigger, typically 6.4 kHz.
- chips 6 and 8 with sensor (PSI46 2.0 from 2004)
 - chip 7 gave readout problems (missing token out?)
- DAC settings from test pulse procedure
 - Vsf and VhldDel slightly adjusted compared to March 2011.
- Bias voltage scan
- Threshold scan
- Sample & Hold delay scan
- Trigger delay scan

Cluster multiplicity vs. bias voltage

 Cluster efficiency saturates below -80 V

Cluster size vs. bias voltage

• S

Cluster charge vs. bias voltage

 Analog gain and offset not equalized

Common threshold voltage scan

adjustable by programmable DAC, per ROC

Cluster efficiency vs. threshold

- DESY testbeam:
 - ► 2 GeV e+
 - Scintillator trigger
 - Vbias -90 V
- VthrComp is inverted:
 - large DAC = soft threshold (close to pedestal).
- Efficiency plateau not reached?
 - timing problem?

Cluster size vs. threshold

- Strange behavior at hard threshold (small DAC).
- Linear growth of clusters with softer threshold.

Cluster charge vs. threshold

- softer threshold → clusters gain some pixels
- A small drop at weak threshold?

Sample and hold timing

32

D. Pitzl: Pixel beam test

Test pulse study from March 2011 Chip 0

- One pixel.
- Position of maximum depends on pulse height:
 - ▶ time walk.
- DAC 150 is compromise

Cluster charge vs. hold delay

- DESY testbeam:
 - ► 2 GeV e+
 - Scintillator trigger
 - Chip 8
- similar behavior as with test pulse.
- Chose 135 as working point.

Timing

beam not synchronized to clock

Trigger delay scan

- DESY test beam:
 - ► 2 GeV e+
 - Scintillator trigger
- delay scintillator trigger going to the PSI46test board
- 25 ns clock cycle
- Triangular efficiency curve:
 - flat arrival time distribution (clock not synchronized to beam)
- Chose 70 ns as working point.

Trigger delay scan

Summary

- First experience with pixel detectors in the DESY test beam.
 - up to 7 kHz / cm² trigger rate at 2 GeV e+ setting.
 - scans of bias voltage, global threshold, trigger and hold delay done.
 - Results from source test confirmed.
- open issues:
 - corrupt readouts (masked out for analysis).
 - ▶ gain variation across chip (~8%).
 - readout problem with chip 7?
- next steps:
 - synchronize clock to beam.
 - apply threshold trimming (progress by Alexey).
 - support that allows for rotation and tilting (vary incidence angle).
 - common readout with the EUDet telescope for resolution studies (Hanno Perrey).

Acknowledgements

- Ingrid Gregor (DESY, test beam coordinator):
 - tolerating us, instructions.
- Norbert Meyners (DESY, test beam coordinator):
 - help with collimator, wire target.
- Samuel Ghazaryan (DESY, test beam support):
 - help with moving system, rate monitor.
- Holger Maser (DESY):
 - building the support frame for the test board.
- Torsten Külper:
 - made the TTL trigger adapter for the test board.
- Erika Garutti (DESY and Uni HH):
 - Ient us the finger scintillator and PM.
- BKR machine group:

• steady beam production, friendly communication D. Pitzl: Pixel beam test DESY

DESY CMS Tracker Upgrade, 6.9.2011

PSI46 test board

