Cosmological implications	Signal at colliders	LHC reach	Conclusion

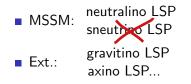
Long-lived staus – a promising scenario at colliders

Jan Heisig (Hamburg University)

IRTG PhD Days 2011 October 4, 2011

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders O	LHC reach	Conclusion


SUSY (*R*-parity conserving) well motivated theory, lot of research SUSY is able to provide DM, but leaves different possibilities Electrically+color neutral:

MSSM:	neutralino LSP sneutrino LSP
Ext.:	gravitino LSP axino LSP

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders O	LHC reach	Conclusion

SUSY (*R*-parity conserving) well motivated theory, lot of research SUSY is able to provide DM, but leaves different possibilities Electrically+color neutral:

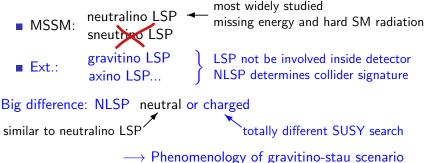
Jan Heisig (Hamburg University)

Cosmological implications o	Signal at colliders ○	LHC reach	Conclusion

SUSY (*R*-parity conserving) well motivated theory, lot of research SUSY is able to provide DM, but leaves different possibilities Electrically+color neutral:

MSSM:	neutralino LSP - sneutrino LSP	
Ext.:	gravitino LSP axino LSP	}

most widely studied missing energy and hard SM radiation


LSP not be involved inside detector NLSP determines collider signature

Big difference: NLSP neutral or charged

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders O	LHC reach	Conclusion

SUSY (*R*-parity conserving) well motivated theory, lot of research SUSY is able to provide DM, but leaves different possibilities Electrically+color neutral:

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders O	LHC reach	Conclusion

Outline

Cosmological implications of gravitino LSP

- Signal at colliders
- LHC reach for the scenario

Jan Heisig (Hamburg University)

Cosmological implications	Signal at colliders	LHC reach	Conclusion
Cosmological implications of gravitino	LSP		

Cosmological implications of gravitino LSP

- Gravitinos produced during reheating $\Omega_{3/2} \propto \frac{T_{\rm R}}{m_{3/2}} m_{\tilde{g}}^2$ inelastic scattering g, \tilde{g} annihilation inefficient, not thermal
- Other sparticles in thermal bath When stau annihilation becomes inefficient "freeze out" Left with long-lived staus

Ensure that not too many staus decay during BBN:

- Upper bound on stau lifetime $au_{\widetilde{ au}} \propto rac{{m_{3/2}}^2}{m_{\widetilde{ au}}^5} \lesssim 5 imes 10^3\,{
 m sec}$
- Or decrease stau density (enhance stau annihilation, dilution)

Cosmological implications O	Signal at colliders ●	LHC reach	Conclusion
Signal at colliders			

Signal at colliders

- Stau NLSP long-lived ightarrow leave detector before decaying ($au_{\widetilde{ au}}\gtrsim 10^{-7}\,{
 m sec}$)
- Charged tracks, high $p_{\rm T}$, tracker+muon-chambers (muon-like)
- Muons always ultrarelativistic \leftrightarrow stau can travel slower than c
- \rightarrow Main discrimination: velocity
 - Measuring the velocity: ToF and dE/dx
 - Cut on velocity $\beta < 0.8...0.9$ (finite β -resolution)
 - Typically discovery/exclusion expected with very few events

Cosmological implications	Signal at colliders	LHC reach	Conclusion
O	O	●○○○	
LHC reach			

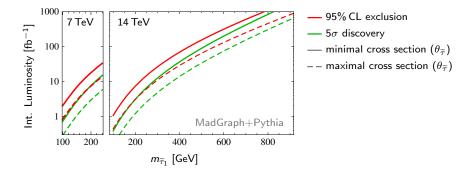
LHC reach

- Model-independent analysis: Not restrict to any high-scale model (phenomenological MSSM)
- Assumption: Direct detection of the stau itself provides most significant contribution for identifying SUSY

Jan Heisig (Hamburg University)

Cosmological implications	Signal at colliders	LHC reach	Conclusion
O	O	○●○○	
LHC reach			

Production Channels

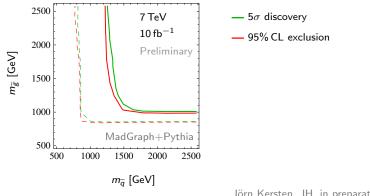

Amongst all possible production channels consider two "extreme cases":

- Direct Drell-Yan $(Z, \gamma \rightarrow \widetilde{\tau}\widetilde{\tau})$
 - Theoretically interesting: Depends only on $m_{\widetilde{\tau}_1}$ and $\theta_{\widetilde{\tau}}$
 - \blacksquare Always present \rightarrow Assured discovery potential and strict exclusion limits
 - Leading for "stretched spectra"
- Strong cascades $(\widetilde{g}, \widetilde{q} \rightarrow \text{decay chain} \rightarrow \widetilde{\tau}\widetilde{\tau})$
 - Potential to exceed direct Drell-Yan the most at LHC
 - Dominantly depends on m_{g̃}, m_{q̃}, but, in principle many MSSM parameters involved through intermediate SUSY particles
 - Large mass gap (Drell-Yan competes with Cascades): Fast staus (harder to detect)
 - Smaller mass gaps ("compact spectra"): Approximately independent of the number and kind of intermediate

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders ○	LHC reach ○○●○	Conclusion
LHC reach			
Direct Drell-Yan:	Luminosity at which o	ne can	

- expect discovery of a stau
- exclude all scenarios with a metastable stau



Jörn Kersten, JH, arXiv:1106.0764

Jan Heisig (Hamburg University)

Cosmological implications	Signal at colliders	LHC reach	Conclusion
O	O	○○○●	
LHC reach			

Mass reach of the 7 TeV LHC with $10 \, \text{fb}^{-1}$ for "compact spectra" (here $m_{\tilde{\tau}_1} \gtrsim 400 \text{ GeV}$):

Jörn Kersten, JH, in preparation

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders ○	LHC reach	Conclusion

Conclusion

- Gravitino LSP viable dark matter candidate
- Gravitino LSP can naturally provide long-lived sparticles with prominent signatures
- Direct production accessible and sets robust limits: $\sim 170 \text{ GeV } @7 \text{ TeV}, 10 \text{ fb}^{-1} (600 \text{ GeV } @14 \text{ TeV}, 300 \text{ fb}^{-1})$
- Limits in $m_{\tilde{g}}$ - $m_{\tilde{q}}$ -plane: @7 TeV, 10 fb⁻¹ Gluinos ~ 1200 GeV, squarks ~ 1000 GeV
- In Contrast to neutralino LSP "streched" and "compressed" spectra not hidden
- We hope to see some signals soon!

Cosmological implications	Signal at colliders	LHC reach	Conclusion

If SUSY is not realized in nature, there are already new ideas on the market:

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders O	LHC reach	Conclusion
the	If SUSY is not realized ere are already new ideas		
	Superj Superj		

Jan Heisig (Hamburg University)

Cosmological implications O	Signal at colliders ○	LHC reach	Conclusion
	f SUSY is not realized are already new ideas		
	Ruper		

Thank you for your attention!

Jan Heisig (Hamburg University)