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Projections for the CMS Computing needs for HL-LHC
CMS-NOTE-2022-008: CMS Phase-2 Computing Mode
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High-Luminosity LHC computing demands will be challenging even in optimistic scenarios
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https://cds.cern.ch/record/2815292?ln=en

Monte Carlo simulations

Monte Carlo (MC) samples used to compare data to theory predictions

Workflow process: Cheap Expensive
e Generation of the physics event at NLO — Relatively cheap 6" Geant4
» Simulation of the detector — Expensive N
"~ ¥~ ~oee 88

~10 different MC samples to take into account systematic uncertainties
e High computational cost

e Enlarge MC statistics (samples dedicated to systematic variations often produced with fewer events)

— Reweighting: incorporate all the relevant variations in a single sample (avoid the need to simulate
the detector response multiple times)
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MC modelling uncertainties

Example: CMS 11 systematics

Systematic

CMS

Nominal
PDFs
NLO matching
Initial State Radiation
Final State Radiation
B-fragmentation

Hdamp

Top mass and width

Underlying Event

Hadronization
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PowhegPythia8

PDF4LHC
recommendations

Variations of u5> P~

Variations of rg parameter in
Pythia8

Tune variations (CP5) +
different CR models

Pythia6b vs Herwig++

<+<— Reweightable inside MC generator itself

<+— Not reweightable inside MC generator itself



Reweighting prescription

Reweight the nominal MC sample to its variations using event weigths

Consider two MC samples, described by probability densities p,(x), p;(x) for x € €2 (phase space):

o Ideal event-level weight: w(x) = p,(x)/p;(x) dN/dx — w(x) X dN/dx

dN/dx Sample 1
Sample 2

Standard reweighting — Ratio in bins of two distributions

e Sensitive to the binning chosen

e (Going beyond a small number of input dimensions is difficult
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Machine Learning for reweighting

Neural network learns to approximate the likelihood ratio w = p,(x)/p;(x) (arXiv:1506.02169)

e Naturally takes multidimensional and unbinned inputs

e Continuous as a function of MC parameters
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Gaus1 (G1)
Gaus2 (G2)
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Machine Learning for reweighting

Neural network learns to approximate the likelihood ratio w = p,(x)/p;(x) (arXiv:1506.02169)

e Naturally takes multidimensional and unbinned inputs

e Continuous as a function of MC parameters

0.4- Gaust (G1) L - Boosted Decision Tree: JPC (2016) 762
Gaus2 (G2) A

0.3 - | - Neural Network: arxiv:1506.02169, PRD 101 (2020) 091901,
% LS PRD 105 (2022) 076015
0.2 J i
£a i s - Input convex neural networks: arxiv:1609.07152

0.1 . |

| " - Normalising flow: Commun. Pure Appl. Math. 66 (2013) 145,
oL e N Comm. Math. Sci. 8 (2010) 217
10 5 0 5
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The Method: DCTR

Deep neural network using Classification for Tuning and Reweighting

e Developed by A. Andreassen and B. Nachman (PRD 101 (2020) 091901)

Why DCTR? Particle Flow Network (PFN) (JHEP 01 (2019) 121)
(25 S
Particle 4 d PID ' S 0//4\‘}\?{{‘&\\\\" ¢, O ‘\\’l///%é\‘}\\v'v'{{’/é\x\‘\\v’{{&
- NWWA /7
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< | HAATAERD 0. 0, QB LTAATA\N
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NN parametrised with reweighting parameter 0 = VN NIO @6 O O '/x\' ’lx\' 7
< o, 0;0
— Continuous reweighting possible = dg Oy \

100 100 100 100 100
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Outlook

We used DCTR method to reweight MC samples of top quark production in CMS

e Reweighting of MC parameters — Systematic variations

o Ny, Parameter at parton level in POWHEG HVQ

e B quark fragmentation at particle level in PYTHIA
e Reweight MC to higher-accuracy theory predictions — Model reweighting

e NLO POWHEG HVQ — NNLO MINNLO
The method can be used in CMS software framework (CMSSW)

e Every analysis involving top quarks can use the already trained models

e The method can be generalised to any physics case after a dedicated retraining

e All the results and implementation in the CMSSW can be found in arXiv:2411.03023
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Powheg /1,,,, parameter in top pair production

e Important parameter in nominal tf MC sample
e Damping parameter, regulating 1*" high-pt emission of POWHEG hvq generator
o Variations of /1, , considered by CMS/ATLAS to assess ME-PS matching uncertainty

e In CMS, samples dedicated to hdamp variations generated with less than half events of nominal sample
QA

A

Ideal example of systematic variation reweighting
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N yamp r€Weighting results

CM|S§imu(at(oq  (18Tev)
* 2 NN models to reweight CMS nominal sample to the two = . ' . powsE (HVQ)lpp—>tf .
T 1 QO ]
CMS variations of hdamp (Paamp = 1.379m, — h dfz?mp = 2.305m;) & — :damp=f-zgzmt
'910_35 —  TNdamp=1I. My _
e Parton level (LHE) information as input to the PFN: 3 S T T Naamp = 1.379my wgt. -
9 :
e 4-vector (py, y, ¢p, m) and PID [top, antitop] 2 107
0]
10_6;_||||||||||||||||||
1oF T o
o | arXiv:2411.03023
-
e Before reweighting: ratio between nominal and up o -
variation sample of /1, =
0
e Method closure within ~2%: ratio between reweighted o8l
sample and the target one 200 400 600 800 1000
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Pythia B-fragmentation parameter in top pair production

B-fragmentation uncertainty: variations of r;, parameter of Lund-Bowler function in PYTHIAS8

m, , my: top & b quark mass

(1 . Z)aexp( me/Z) a, b: terms related to light quarks
1, term related to b quark

Jp(2)

Z 1+b me

a, b, r;, free parameters to be tuned to data

In CMS only the sample with PYTHIA nominal r, = 0.855 produced, no variations

— Crucial to use a reweighting method to produce the variations

Example of continuous reweighting

DESY. 1 2



B-fragmentation discrete reweighting

CMS Simulation (13 TeV)
e B-hadron momentum fraction respect to b-quark Xx, :) 3.0 PYT|H|A pp_')tf L
as input to PFN: 1D variable comprising entire event <E_2 s — fo=1.056 : E
iInformation f == 1,=0.855
2pB . q 2.0F I, = 0.855 wqt.
_ — 2 a2 —
X), = : /(1 —w), w=my/m; of
[
g: four-vector top pg: four-vector B-hadron 1.01-
m,. top mass my,. W-boson mass O.Sf—
00 | arXiv:2411.03023 °
e 2 NN models to reweight CMS nominal sample to the S e
two CMS variations of 7;,
0.5 | | | | |

e Reweighting closure within 2% up to x, < 1
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B-fragmentation continuous reweighting

e Trained one single NN model to reweight:

e Whatever value of 7, in [0.6, 1.4] to

e NN parametrised in 0 (i.e. r})

—
o
L

v2/NDF (NDF = 50)

107

e The method works well in all the range r;, =[0.6, 1.4]
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CMS Simulation (13 TeV)
o | I | | | | | | I | | |
_ —*— Reweighted - target: X B
- Qriginal —target: X @’,,o ;
. —=— Reweighted - target: p° ,,@f”
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arXiv:2411.03023
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Model reweighting

Generator/Predictions increasingly accurate and available (e.g. NNLOPS: MINNLOy)

e But difficult (and slow) to regenerate and resimulate all the MC samples

Temporary solution:

— Reweighting of Parton Level MC Simulations to higher-accuracy theory predictions

NLOPS: POWHEG hvq (JHEP 06 (2010) 043) = NNLOPS: MiNNLO (JHEP 05 (2020) 143)

- -
\%/HVQ T » \J\ijill)iNNLO C Both interfaced with PYTHIA 8, since
—

the shower effect acts differently on
— the two generators

Only events based on the kinematics of tt system reweighted, inclusive over additional ME + PS radiations

DESY. 1 5


https://link.springer.com/article/10.1007/JHEP06(2010)043
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Model reweighting results

e Parton level information as inputs to the PFN:

e 4-vector (py, Y, ¢, m)and PID [z, 1, tf system] of the

showered events

e Before reweighting: ratio between NLO and NNLO

generators

e Method closure within ~2%: ratio between reweighted

sample and the target one (NNLO)
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CMS Simulation

(13 TeV)

1072 POWHEG pp-tt + PYTHIA —
—— NNLO (MINNLO) :
_103L == NLO (HVQ) _
l*:; ----- NLO (HVQ) wagt.
Q.
ro;
@)
1
Z
Z
e
O
T arXiv:2411.03023
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Implementation in CMSSW

Interoperability

<€ >
User doesn’t need to retrain the model, it has just to load ONNX

the model and compute the weigths to apply to its events & cagfer RUNTIME

: é Caffe?

O PyTorch
e Trained model saved in ONNX universal format £ Tensor \ %) PyTorch
and can be used in CMSSW

e Facilitates sharing/usage of NN models across
different frameworks

® WeightS Can be add at Whatever ana|YSiS Stage export to onnx e ¢ load from onnx

e The method is generic, can be used by all analyses

DESY. 1 7



Summary and conclusions

e Modelling uncertainties are already a major source of uncertainty at LHC
e Computational cost is a bottleneck (many alternative samples to be produced)
e The current conditions will not be sustainable at HL-LHC
e DCTR reweighting of MC samples solves the bottleneck
e Firstuse of DCTR for a real CMS analysis application
e Reweighting achieved high precision
e Many other applications in any physics field can be investigated
e MC tuning at detector level
e PYTHIA vs Herwig reweighting
e Unbinned and full phase space unfolding
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Other DCTR applications

1. DCTR continuous as a function of MC parameter

— Tune MC to match an unknown sample, e.g. real data arxiv1907.08209

.76 - a, = 0.16
.74 1
e Passing data to NN, MC parameter o
value extracted without generating all = (.72
MC templates —
.70 -
0.10 0.12 0.14 0.16 0.18

(Y .

Minimum at the

true value
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Loss function and optimizer algorithm

Loss function: “cross-entropy loss (or log loss)”

It measures the performance of a classification

model whose output is a probability value between 0
and 1

It iIncreases as the predicted probability diverges
from the actual label. A perfect model would have a
log loss of 0

* Optimizer algorithm: “Adam”

DESY.

It permits to minimize the loss function

It Is a stochastic gradient descent method, based on
adaptive estimation of first-order and second-order
moments

10

Log Loss when true label = 1

log loss

0.0 0.2 0.4 0.6 0.8
predicted probability
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Powheg 7, parameter in top pair production

Heavy quark process of Powheg (arxiv1002.2581): — CMS Simulation (13 TeV)
_ S 107 POWHEG (HVQ) pp -t E
o Nominal CMS: /1, = 1.379 - m, S o gamp = 0.8738m; -
— — Ndamp = 1.379my
e 2 CMS variations: ol=. ., e e Ndamp = 2.305m;
O Q_1O = E
down __ . up , b'c
. o = 08739 -m, P =2.305-m, N
10-6} E
ol arXiv:2411.03023
For computation reasons, variation samples produced T T T

with less than half the events of the nominal sample— IR
Decrease precision of analyses ]

— Reweighting: same number of events in nominal and

variations samples 08 | | | _

v e e b
250 500 750 1000 1_250 1500

pr(tt) [GeV]
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Powheg 7, parameter reweighting

 Discrete reweighting trained on 2 values of hdamp

e 2 NN models to reweight:

o Nominal to up CMS variation of /1, (1.379 — 2.305) - m,

» Nominal to down CMS variation of h,,,,.: (1.379 — 0.8739) - m,

e Training & validation samples: e Inputs to PFN
e 80M events e Parton level information from LHE files
e /5% used for training, 25% for validation e 4-vector (p7, v, ¢, m) and PID of top and antitop

DESY. 2 4



N yamp r€Weighting results

CMS Simulation (13 TeV) CMS Simulation (13 TeV)
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N yamp r€Weighting after the shower

* The model is trained at parton level using LHE information

e The reweighting works well also after showering the events (hvq interfaced with PS generator Pythia)

CMS Simulation (13 TeV) CMS Simulation (13 TeV)
_|q_5 : | | l | | | l | | | | | | | | | l | | | l : 1I_—l | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
-8 Z A y L, 10 3 POWHEG (HVQ) pp-tt+ PYTHIA 3
b-c 10 E_ _§ 8 - - hdamp =2.305m; E ]Vjel‘S
< - 7 — ;
= _ — = hgamp =1.379m, 1 P !
102 _ _8 % 10° =1 Ndamp = 1.379mM; wgt. 3 pT : pT
@) =0
—
- : _ With p > 30 GeV <24
10-3 POWHEG (HVQ) pp—tt+ PYTHIA . 107*E Pr  1n|
- = Ngamp =2.305m, . -
ol T Ngamp = 1.379m, - 05|
----- Ngamp = 1.379m; wgt. E
b i
Q. Q.
) -
o —— - SRl D——
O NC e O N
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Pythia r;,, parameter reweighting

Rederivation of rb using LEP results: ;" = 1.056, rg‘p = 1.252, rg‘)wn = (.856

* Trained 2 NN models to reweight:
v'Nominal Pythia to nominal CMS CP5 tune value of r;;:

(0.855 — 1.056)

v'Nominal Pythia to up CMS CP5 tune variation of 7;;:
(0.855 — 1.252)

X Nominal Pythia to down CMS CP5 tune variation of 7},
(0.855 — 0.856) — NOT sensitive to this small change

DESY.
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B-fragmentation parameter reweighting

« Continuous reweighting trained on 10 values of r,,

e One single NN model to reweight:

o 9 different r;, values to the CMS nominal one (r;, = 0.855)

e Training & validation samples: e Inputs to PFN
e 10M events e Particle level information from Pythia samples:
e 90% used for training, 10% for validation e 2 x, from 2 b-quarks decaying from tops

DESY. 2 8



1, parameter reweighting results

e Goodness of reweighting checked with a
reweighting closure:

e Comparison between reweighted and target
sample

o Target: sample generated with r, = 1.056

e Reweighted sample: sample generated with

r, = 0.855 and reweighted to r, = 1.056
using a test sample

o Test sample: 500k events generated for each r;, value,
orthogonal to trained and validation samples

e Reweighting closure within 2% up to x, < 1

DESY.
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CMS Simulation (13 TeV)
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D 3.0 PYTHIA pp - i ! -
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1, parameter reweighting results
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1, parameter reweighting results

CMS Simulation (13 TeV) CMS Simulation (13 TeV)
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Model reweighting

e Training & validation samples: e Test samples:
e 10M events at NLO, 10M events at NNLO e 10M events at NLO, 10M events at NNLO

e ~/5% used for training, ~25% for validation

e Inputs to PFN

e Parton level information after shower

e 4-vector (pr, ¥, ¢, m) and PID of top and antitop, and ttbar system

e 4-vector of additional partons not included, since the NN architecture is not suitable
to reweight a 3D to a 4D phase space

DESY 32



Negative Event weights

e Negative event weight comes from the cancellation of soft and collinear real emissions by
corresponding virtual corrections

e <1% for NLO accuracy, 10% for NNLO accuracy

e The binary cross-entropy is negatively unbounded for negative event weights — The
classification task can become impossible

e This effect can be mitigated by using of a large batch size, which reduces the risk of a single
event dominating the loss function.

e This approach works for NLO simulations, not for NNLO ones

e The Categorical Cross Entropy loss function can not learn negative weights

e Mean Square Error loss can learn negative weights when using enough large batch size
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MINNLO reweighting

The method works well also on observable we didn’t train on

— CMS TSirlnullatlioq —— (13 TeV) CMS Silrnu(atign , CMS Simulation CMS Simulation (13 TeV)
~— _ 1|_—| i 1 1 1 1 I 1 1 1 1 B 1 | 1 1 1 | 1 1 1 | 1 1 1 |
% 1072 E POWHEG ppti + PYTHIA 1 | POWHEG ppti + PYTHIA _ POWHEG ppoti + PYTHIA -
o : — NNLO (MINNLO) - g —— NNLO (MINNLO) —— NNLO (MINNLO)
'—I'A 103 —=' NLO (HVQ) . = 10°} == NLO(HVQ) . == NLO (HVQ)
o|Z S T S NLO (HVQ) wagt. : ol - NLO (HVQ) wagt. ] NLO (HVQ) wagt.
Ol & B ] PY ] .
O 104 — © :
O - E o _
~ n ] ~~ |
- B - POWHEG pp-tt + PYTHIA I
10~ 3 s E —— NNLO (MiNNLO)
i I " NLO (HVQ) 10~
10°F —
E | | | | | | | | | | | | | | | | | | | ] 1
1.2F | B | - 11 11
O - // i O : o ol
1 | P | ] —l ]
Z I * Z Z pa
Z C TN | 1 Z prd zZ
o | 1 fe) ke, 2
© | | © s Iy
o t I o i 0.9 = 0.9
0.8 . | . | . | RN R '

1000
m(it) [GeV]

200 400 600 800 1000
pr(tt) [GeV]

All results from arXiv:2411.03023
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MINNLO reweighting: top observables

CMS Simulation (13 TeV) CMS Simulation (13 TeV)
1|_—| ; | | | | | | | | | | | | | | ; B | | | | | | | | | | | | | | ]
S POWHEG pp—tt + PYTHIA o= 10 1F =
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- 1073 —= NLO (HVQ) E g 10-2 B i}
of~ | 000 k== NLO (HVQ) wagt. :

jolkel N ]
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2 4o E 107 E
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10-5L . i - =" NLO (HVQ) :
| | | I | | | I | | | I :_ _":_u _: — 1 0_5 E — | | | | | | | | | | | -_;
/// ] 1.1 "i: : |
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All results from arXiv:2411.03023
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DCTR compared to 2D bin reweighting

Comparing DCTR to 2D bin reweighting

« The 2D reweighting is done with p, and 7 of tf system

« Check the goodness of the two reweightings on p(f)

e Both methods work well on variables used in the

2D reweighting

DESY.

CMS Simulation (13 TeV)
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DCTR compared to 2D bin reweighting

CMS Simulation (13 TeV)
E [ [ [ | [ [ [ [ [

Comparing DCTR to 2D bin reweighting Lo

= POWHEG pp—ti + PYTHIA
e The 2D reweighting is done with pand 1 of 17 system o} - T NHOGINNL)

== NLO (HVQ) —
----- DCTR: NLO wat. .
*+ 2D Bin: NLO waqt.

» Check the goodness of the two reweightings on p(1) 3 ;-'E

1075}

O

—

Z

o 2D reweighting improves p.() but still large =
deviations respect target o

©

is

e DCTR uses the whole phase space for reweighting

0.8

IR A R N N N T Y S A N M B
- 200 400 600 800
— It works well on any projections pr(t) [GeV]
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The method: NN architecture

Particle Flow Network (PFN) (arxiv1810.05165)

Z D(p;)

p;: properties of particle 1

F1 =samplel, 6,

{pT9 Y, ¢’ PID, 9}

and parameter to < . sg)ftma{(ed
reweight 0 OO F2 = sample2, 0 discriminant
Figure from
arXiv:1810.05165
@ processes each particle individually, ~ F takes the sum of @ latent representations

providing a per-particle internal (latent)
representation

from all particles to produce an overall
event-level representation
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Dealing with negative Event weights

1 N
Lpcr(f) = - — D wMC(y; - logf(x) + (1 — y;) - log(1 — f(x;))

1 N
Lyse() = N Z wi - (f(x) = ¥y

yi: true label of each event (between 0 or 1 according to which class it belongs to)

f(xi): predicted probability (between 0,1)

W%VIC: MC event weight

DESY.
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B-fragmentation discrete reweighting

CMS Simulation (13 TeV)

— [T T T

Reduced y* to test goodness of reweighting D 3.0F  PYTHIApp - H - E
<< [ — r,=1.056 :

e Before reweighting: difference between 2 samples 2.9 :E=O.855 B

with different r;, oo b = 0.855 wgt. -

e After reweighting: difference between reweighted 1 51 -

sample and target one :
1.0 -
0.5F -

s ArXiv:2471.09023
N L L L L BB B AL
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Technical information: PFN architecture

All models are implemented in Keras with the Tensorflow backend

* Technical details:
« Latent space dimension: =128
« Activation func: RelLLu
 Classification output func: softmax
* Loss func: crossentropy loss
e Optimizer: Adam™**
e Learning rate: 0.01**

« Early stopping with patience 10 ****%

*¥% to update the NN parameters (weights and biases), to
minimise the cross-entropy loss function for 100 epochs.

*HF%*To prevent overfitting

DESY.

This architecture has been already
optimised by the authors for particle
physics.

41



Pythia B-fragmentation parameter in top pair production

B-fragmentation uncertainty: variations of r;, parameter of Lund-Bowler function in PYTHIAS8

m, , my: top & b quark mass

(1 . Z)aexp( me/Z) a, b: terms related to light quarks
1, term related to b quark

Jp(2)

1+brymg

<

a, b, r;, free parameters to be tuned to data

In CMS only the sample with PYTHIA nominal r, = 0.855 produced, no variations

— Crucial to use a reweighting method to produce the variations

e Variable to reweight systematic uncertainties in CMS: B hadron
T
e Ratio in bins of two distributions with different w at truth level " = pBi e
DCTR reweighting — full phase space reweighting T

DESY. 4 2



Statistical uncertainty of the method

 Training is repeated 50 times bootstrapping the data

* The goodness of the reweighting with the 50 trained model is checked and the mean and the standard
deviations of the models computed in each bin

e Our model is compatible with the target one within the statistical uncertainty of the method

CMS Simulation (13 TeV)
I I I | I I I | I I I | I I I | I I I

| = Ngamp = 2.305m; ]

- Reweighted to up (mean)

—h
N

Ratio to up

Reweighted to up (std)

—h
=
I I I I I

0.9}
arXiv:2411.03023
I T T T B
0-80"~"500 400 600 800 1000

pr(tt) [GeV]

DESY.


https://arxiv.org/abs/2411.03023

