HOM-based Beam Position Monitoring

Nicoleta Baboi, DESY/MDI

for the HOM-BPM team:

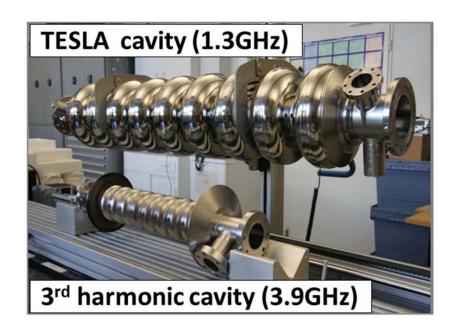
Nathan Eddy, Thomas Flisgen, Hans-Walter Glock, Roger M. Jones, Bastian Lorbeer, Ian Shinton, Pei Zhang

FLASH Workshop, DESY, Hamburg, Oct. 4, 2011

Overview

- > Principle of HOM-BPMs
- > Current work:

HOM-BPMs for 3.9 GHz cavities at FLASH

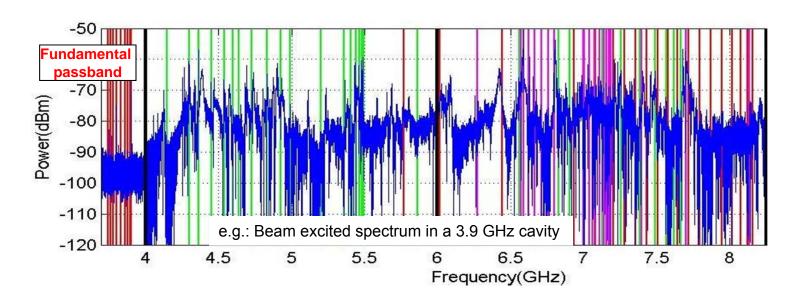

> Future plans (tentative):

HOM-BPMs for 3.9 GHz cavities at the XFEL

HOM-BPMs for 1.3 GHz cavities at the XFEL

Improvement of HOM-BPMs at 1.3 GHz cavities at FLASH

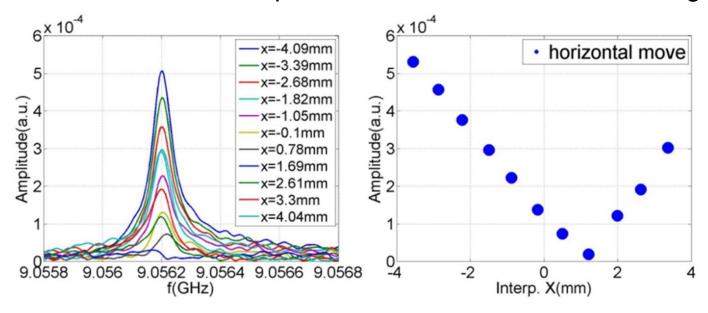
> Summary and Outlook



Principle of HOM-BPMs: Higher Order Modes (HOM)

- > HOM: fields excited by the beam in the accelerating cavities
 - Bad effect on beam, but also
 - Can be used for beam (and cavity) diagnostics

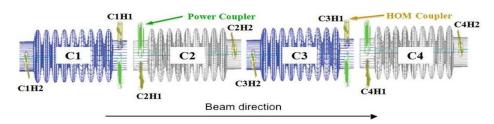
Because properties depend on accelerating cavity and beam properties



Spectrum includes: monopole, dipole, quadrupole etc. modes

Principle of HOM-BPMs: Dipole Modes

> Dipole modes have linear dependence on beam offset and charge

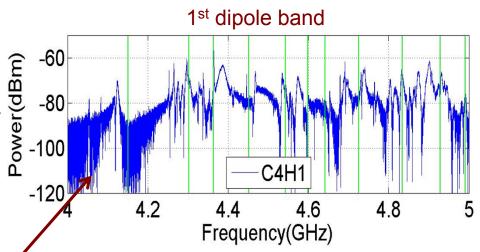


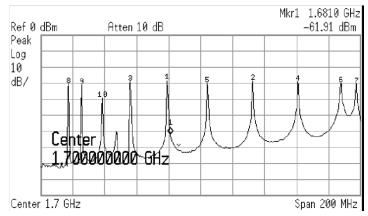
- ⇒ Idea: Use dipole HOMs for beam position monitoring (HOM-BPM)
 - Center beam (therefore reduce wakes)
 - Measure cavity misalignment
- > Same idea as for cavity BPMs, but much more complicated

Current Work: HOM-BPMs for ACC39 at FLASH

- > ACC39
 - Built at Fermilab in collaboration with DESY

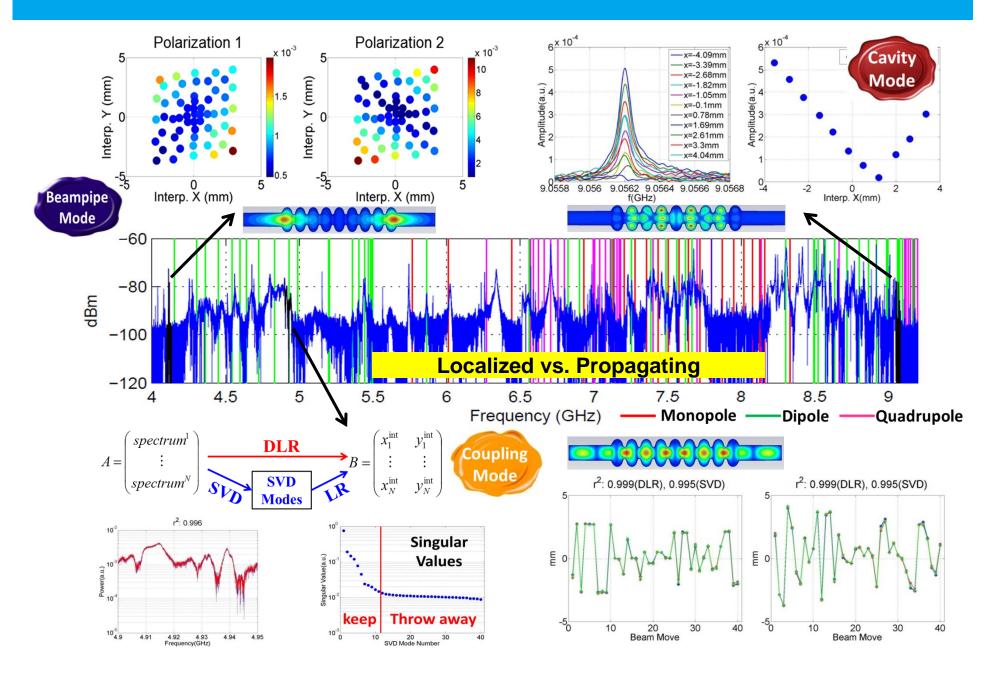
- > **EuCARD**: Partially supporting our work
 - Sub-tasks
 - 1: HOMBPM
 - 2: HOMCD (HOM Cavity Diagnostics)
 - 3: HOMGD (HOM Distributions and Geometrical Dependencies)
 - Several PhD students involved



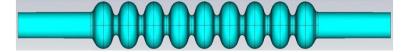


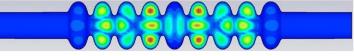
HOM-BPMs for ACC39 at FLASH: 1st Dipole Passband

- Idea: use mode with high R/Q
- > But, crowded spectrum
 - Practically all cavity modes above cutoff
 - Modes: not possible to identify
 - Modes are not localized
 - Idea: cut one portion of spectrum (several modes)
- > Alternatives:
 - Beam-pipe dipole modes
 - Trapped cavity modes in 5th dipole passband
 - All options: advantages and diadvantages



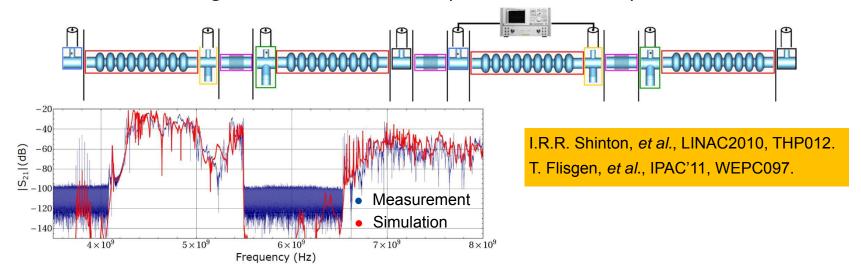
Compare to TESLA cavity:


Localized and Propagating Modes in ACC39


Simulations of 3.9 GHz Cavities

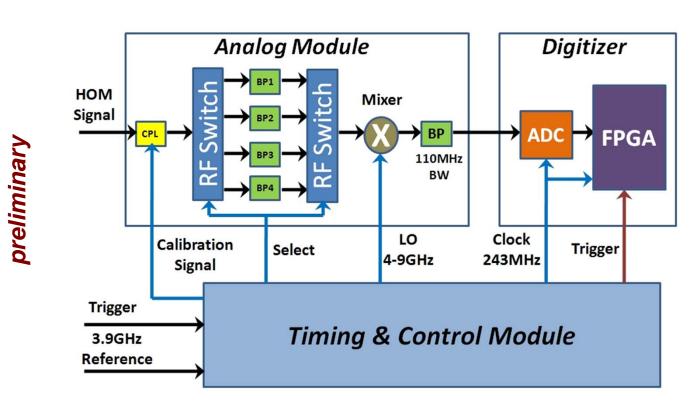
Ideal cavity w/o couplers

P. Zhang, et al., IPAC'11, THPPA00.



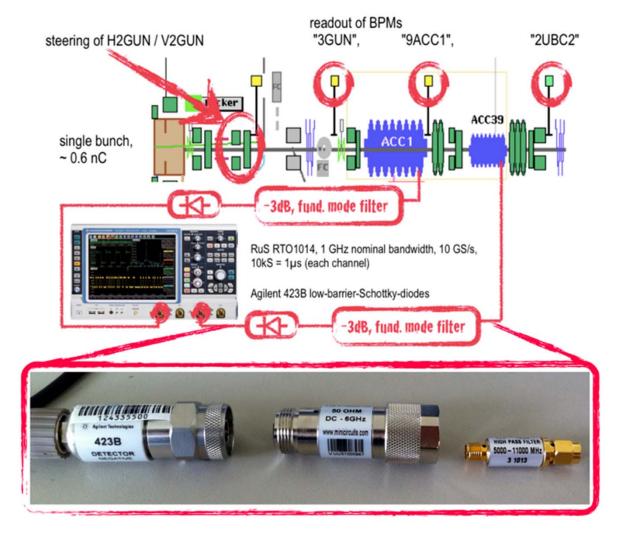
ω/2π: 9.058 GHz, R/Q: 2.17 $Ω·cm^2$

Cascade scattering matrix calculation (GSM and CSC)



> Simulate the entire 4-cavity string (ACE3P@SLAC)

Electronics for ACC39 at FLASH


- > To be built by Fermilab
- "Play"-electronics will be tested early next year
 - Test options

N. Baboi et al., SRF 2011, MOPO060, Chicago, IL, U.S.A.

Alternative Electronics: Diode-based Signal Capturing

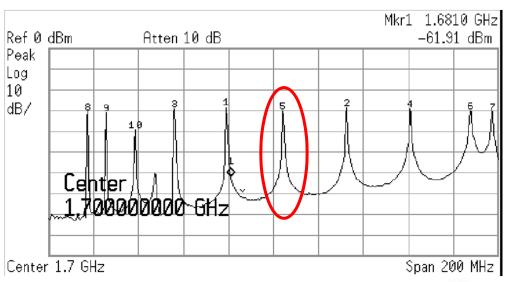
- > Alternative electronics
 - Already tested at ACC39 and ACC1
- Simple setup
 - Broad-band filter to suppress 3.9 GHz
 - + RF detector diode
- Signal output ~ totalHOM power
- SVD-based signal analysis
 - Complicated, but it works

H.W. Glock, DIPAC2011, MOPD25

HOM-BPMs for ACC39 at FLASH: Future Plans

- > Test "play" HOM-BPM electronics from Fermilab
 - Beginning of 2012
 - Evaluate results and decide final strategy
- Continue work with diode-based signal capturing
- Continue simulations
- > Built and install final electronics

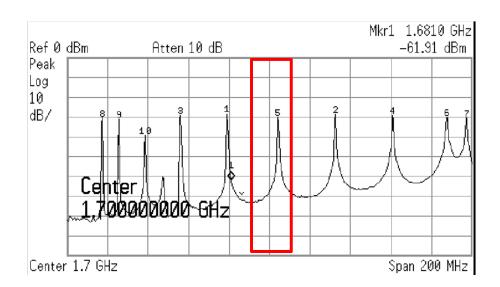
> Pei Zhang: Prize at IPAC 2011!

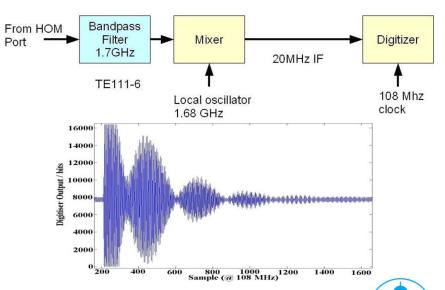

Future Work: HOM-BPMs for 3.9 GHz Cavities at E-XFEL

- > Tentative plans
- Use results from current work at FLASH
- Some experimental and theoretical studies needed
 - 8 cavities per module
 - Different arrangement of cavities in module
 - Smaller bunch spacing than now in FLASH etc.
- > Electronics: XFEL-conform
- > WP 46

Future Work: HOM-BPMs for 1.3 GHz Cavities at E-XFEL

- > Tentative plans
- Collaboration with the University of Warsaw
- > Sample dipole mode at 1.7 GHz
 - Profit from development of fast ADC card for LLRF (EuCARD WP 10.6)
- > Electronics XFEL-conform: needs to be designed
- > WP 17





Future Work: HOM-BPMs at 1.3 GHz Cavities at FLASHs

- > Current electronics
 - Built by SLAC
 - Proof-of-principle made
 - Resolution for the 1st bunch
 ~10 μm
 - Problem with calibration stability
 - Raw signals used for commissioning
 - S. Molloy et al., PRST-AB 9, 112802 (2006)

 J. Frisch et al., EPAC 2006, TUYPA02,
 Edinburgh, Scottland
- Idea: improve or replace current electronics
 - Work correlated to work on HOM-BPMs for the XFFI

Summary and Outlook

- > Current work: HOM-BPMs for ACC39 at FLASH
 - PhD students: Uni. Manchester/DESY, Uni. Rostock, RHUL
- > Future Work (tentative):
 - Design HOM-BPMs for 3.9 GHz cavities at the XFEL
 - Design HOM-BPMs for 1.3 GHz cavities at the XFEL
 - Improve HOM-BPMs at the 1.3 GHz cavities at FLASH
 - Possibly HOM-based beam-phase measurement wrt RF
 - Need to clarify financial aspects, man power

> Beam time

- Both for FLASH and the XFEL
- Fermilab: interested to build similar electronics for their SC test facility
- Not easy to separate, therefore we need both FEL and machine studies
- > EuCARD2: HOM-based beam diagnostics for the XFEL

