Longitudinal Beam Dynamics Studies

Martin Dohlus

longitudinal phase space tool: rf_tweak4_csr

characterization of FLASH

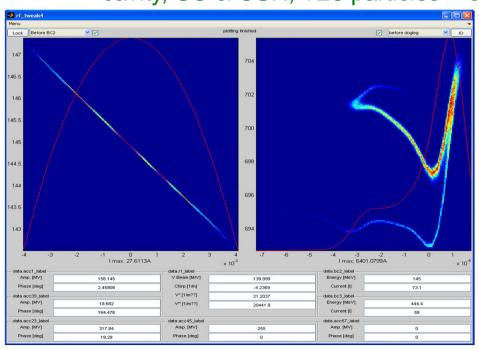
"virtual" initial distribution

LOLA: experiment & theory

required shifts

longitudinal phase space tool: rf_tweak4_csr

reads machine parameters (rf before bc2)


keeps & controls working point before bc2 (E, E', E", E"')

predicts compression / phase space distribution

need knowledge of "virtual" 1D distribution

without self effects $|E(s) \rightarrow C(s)|$

without self effects $|E_i, q_i, s_i|$, $i = 1 \cdots \sim 10^6$ from Astra or 1D particle generator cavity wakes, SC wakes; need few seconds cavity, SC & CSR, 1E6 particles ~ one minute

characterization of FLASH

gun → initial (virtual) 1D phase space distribution

rf (after gun): amplitudes and phases

self effects: known & considered wakes (cavity, SC, CSR)

known but not considered (complete imp. data base)

unknown wakes

compressors: r56

LOLA measurement

calibration

coupling/de-coupling with/from other phase space dim.

velocity effects

"virtual" initial distribution

it is:

longitudinal phase space before BC2

minus | nominal rf-field of ACC1 and ACC13

"virtual" initial distribution

depends on gun parameters and systematic error of rf settings sensitive on E, but insensitive on the other knobs (E', E", E")

reconstruction:

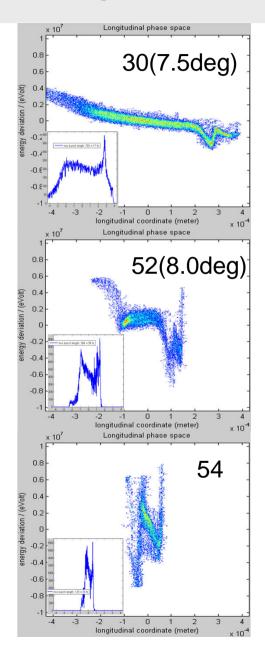
without self effects: low bunch charge, weak compression

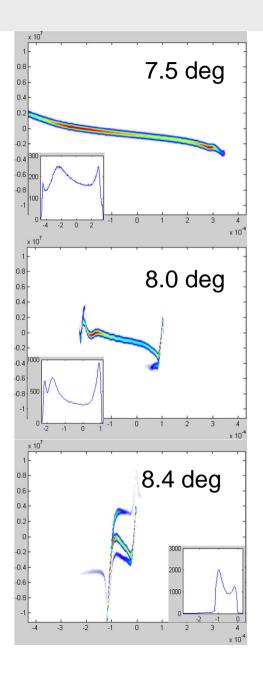
time-energy-method: take longitudinal phase space from LOLA

track back

needs knowledge of all parameters

time-time-method: take longitudinal profile for two different rf settings


unique initial distribution


needs many parameters but not LOLA energy scale!

simplify setup: one-BC-mode

LOLA: experiment & theory

required shifts

phase control with BAMS single bunch operation energy 700MeV LOLA measurement (some measurements on both slopes) no SASE all measurements with Q = 0.25 nC and 1 nC

2 shifts: BC3 off, RF between BCs on crest

weak compression (C=1...3); use rf-tweak;

→ characterization of "virtual" initial distribution all measurements on same LOLA working point

strong compression (C=3...)

→ both slopes, chirped & un-chirped

sensitivity of LOLA measurement on transverse steering strong compression with weak / strong streak steering before LOLA, ... upstream

2 shifts: pseudo 1-BC operation, BCs nominal but RF between BCs on crest

measurements as before

2 shifts: effect of gun parameters on long. profile ("virtual" initial distr.)

2 shifts: automatisation of LOLA

