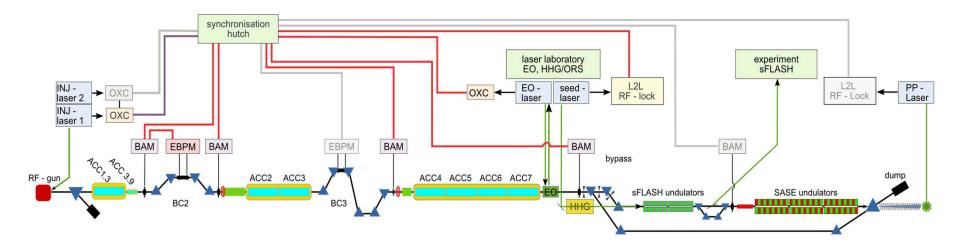


Normal conducting cavity for arrival time stabilization

Holger Schlarb, DESY

FEL Motivation

- Improve synchronization pump-laser requested from users < 10 fs FWHM (4fs rms)</p>
- Seeding & slicing and bunch manipulation better control on seeded portion of electron beam < 10fs desired</p>
- Plasma acceleration (synchronization plasma laser) bubble regime requires ideally ~ 2-3 fs rms synchronization
- Ultra-short pulses (< 20fs)</p>
 better control on compression & arrival
 synchronization jitter < electron bunch duration</p>
- Accelerator R&D

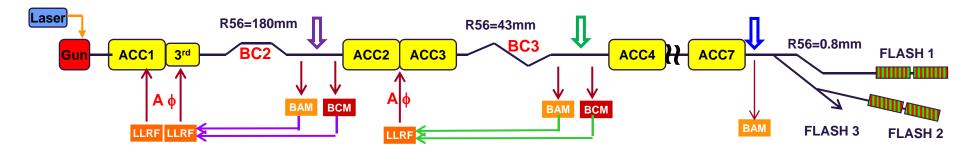

limit for arrival time stability in SRF system!

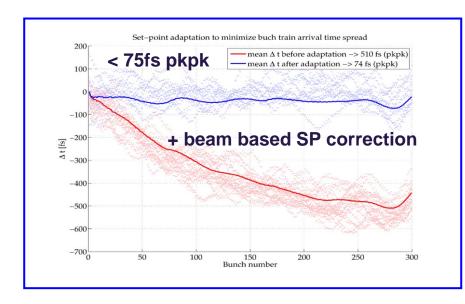
7 fs rms stability @ FLASH == dV/V < 1e-5

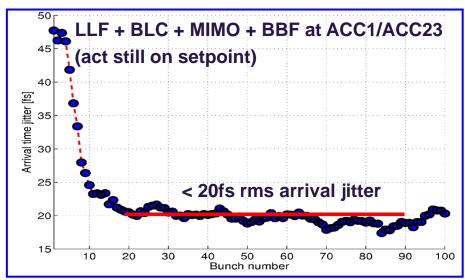
Question: how can we improve

Courtesy: M. Bock

- Optical synchronization system provides fs stability
- BAM allows for femtosecond measurement of arrival time
- L2L to lock lasers with femtosecond precision
 Continuously upgraded

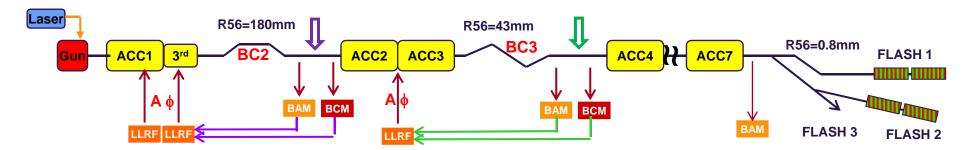

Courtesy: M. Bock


Beam based feedback



Beam Based Feedbacks:

- BAM and BCM after BC2 ⇒ amplitude and phase in ACC1 and ACC39
- BAM and BCM after BC3 ⇒ amplitude and phase in ACC23



Beam based feedback

Beam Based Feedbacks:

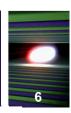
- BAM and BCM after BC2 ⇒ amplitude and phase in ACC1 and ACC39
- BAM and BCM after BC3 ⇒ amplitude and phase in ACC23

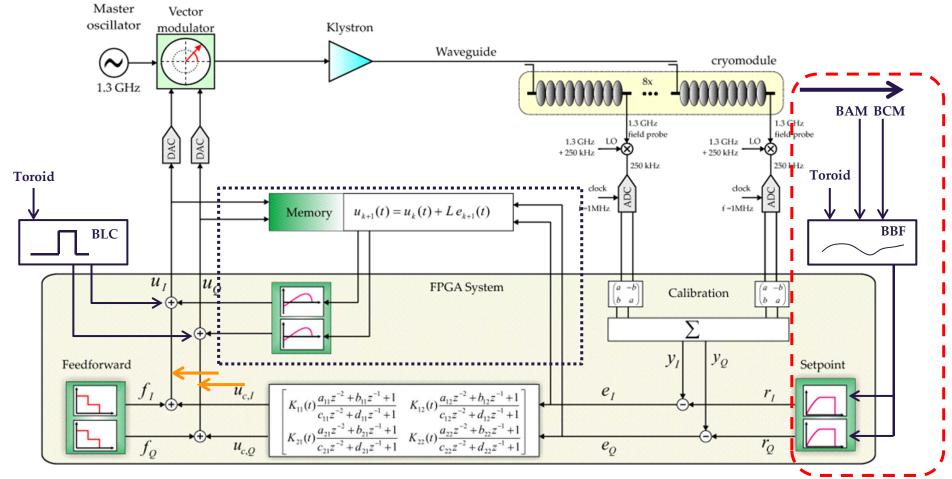
Timing jitter behind BC2

$$\Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0}\right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C-1}{C}\right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C}\right)^2 \cdot \Sigma_{t,i}^2 \qquad \text{factor} \\ \Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0}\right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C-1}{C}\right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C}\right)^2 \cdot \Sigma_{t,i}^2 \qquad \text{factor} \\ \Sigma_{t,i} = \frac{1}{C} \sum_{t=0}^{\infty} \frac{1}{C} \sum_{t=0$$

Case 2: $\phi_2 \approx 0^\circ$, $E_2' \ll E_1'$:

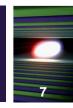
Jitter from BC2 largely remains + additive jitter!


Timing jitter behind BC3


$$\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0}\right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2 (C_1 - 1)}\right)^2 \left(\left(\frac{R_{56,1}}{c_0}\right)^2 \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1}\right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2}\right) + \left(\frac{1}{C_1 C_2}\right)^2 \Sigma_{t,0}^2$$

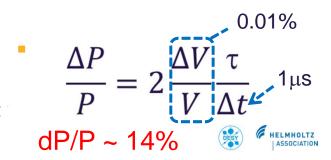
FLASH Workshop, 2011

Implementation of beam based feedback into LLRF controller


- present implementation of BBF into LLRF
 - ⇒ only via set-point correction (robust but not optimal due to RF controller design)
- new implementation: acts in addition directly on feed forward
 - ⇒different controller design, lower latency, MIMO including BBF

FEL Drawback using SRF

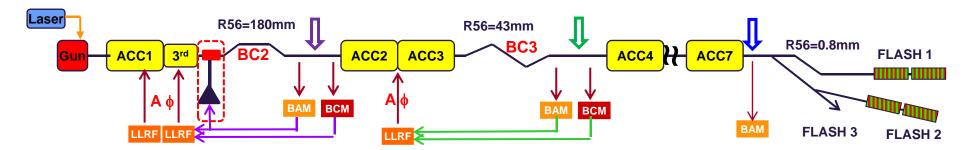
SRF cavities have low bandwidth (very stable!)


Parameter		
Frequency	f_0	1300 MHz
Loaded Q	Q_L	3e6
Bandwidth (-3dB)	$\delta f = f_0/(2Q_L)$	216 Hz
Rise/fall time	τ	735 us
r/Q	r/Q	1041 Ω

Fast correction may required due to

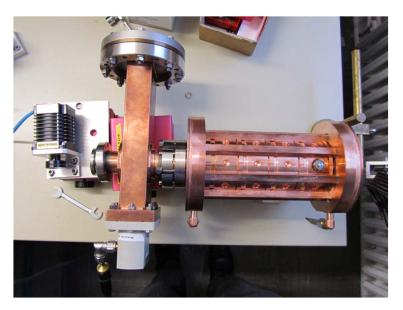
- Transients induced by cavity passband modes (dE/E ~ 3e-5)
- Multi-bunch longitudinal wakefields
- Rapid variation in photo injector lasers / RF gun (pulse form/shape)
- Beam loading changes due to rapid bunch charge variations
- Fast oscillations of arrival time has been observed (~100kHz)
- 8/9pi mode requires roll off of LLRF FB controller

Power for fast corrections


- Large klystron power variations required
- Power changes Pfor/Pref at main coupler => orbit
- Sophisticated exception handling required

Beam Based Feedbacks:

- BAM and BCM after BC2 ⇒ amplitude and phase in ACC1 and ACC39
 but mainly slow variations, systematic & repetitive errors <~20kHz
- BAM and BCM after BC3 ⇒ amplitude and phase in ACC23
- BAM after BC2 ⇒ feed forward drive for normal conduction cavity Remark to fast long FB:
- Only location possible prior to BC2: large R56 at small energy (150MeV)
- Typically ~ 50-100 kV @ 1000 x large cavity bandwidth
- Short cables, fast processing time, only semi-conducting amplifier
- Latency < 1 us
- Shoot for FB bandwidth > 100 kHz



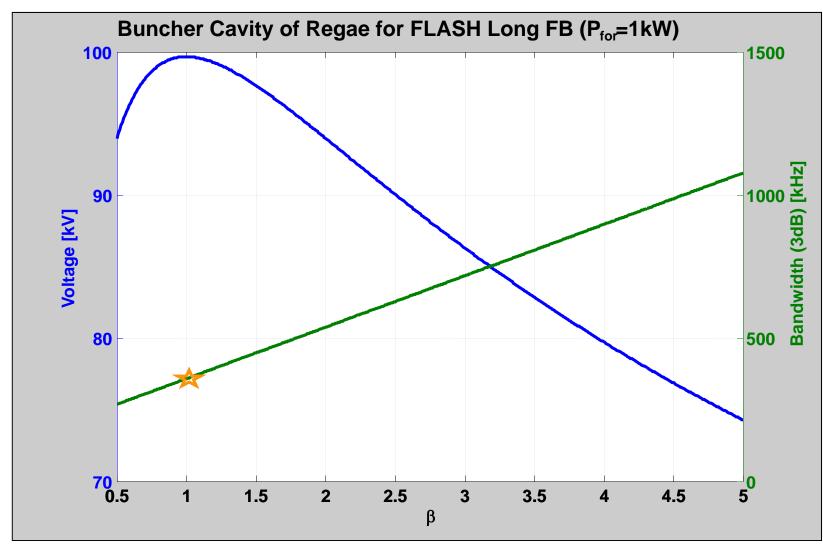
XFEL Normal RF FB cavity with large bandwidth

Option: Regae buncher cavity (design ready, parts can remanufactored)

				i i i i i i i i i i i i i i i i i i i	Buncher 10090	7.TBL 9-21-2010	
)			Ne Be				
)							
)						\	
		ReEx	ImEz				
,	\		_				
	\						
)							
·	······\			1	1		

3,1		,
Parameter		
Quality factor	Q0	8346
Frequency	f_0	2997.2 MHz
Number of cells	Ncell	4
Coupling	β	1
Loaded Q	Q_L	4173
Bandwidth (-3dB)	$\delta f = f_0/(2^*Q_L)$	360 kHz
Amplifier Power	Pmax	1 kW
Maximum Voltage	Vmax	99.7kV (±400fs)
Rise/fall time	τ	440ns
r/Q	r/Q	610.2 Ω

- Cavity excellent well suited ~ 100kV
- LO generation for 2.9972 GHz (TDS PITZ available)
- Semi-conductor Preamplifier with 1kW sufficient
- Water cooling only for tuning required (<5W average)
- May bandwidth increased by over-coupling
- Installation length ~ 35cm (critical)



XFEL FB cavity with large bandwidth

Thanks for your attention

