Short pulse and double pulse production

Proposals for accelerator related experiments at FLASH from PITZ

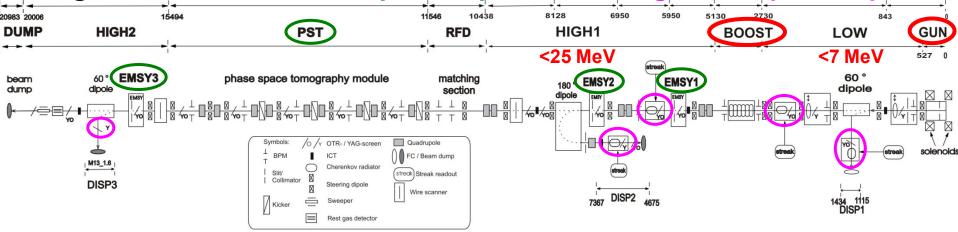
M.Krasilnikov, F.Stephan, PITZ

- Short pulse production by off-crest operation of the RF gun
- Double pulse production to test particle driven wakefield acceleration

PITZ = Photo Injector test facility at DESY in Zeuthen

> Setup:

- RF-gun (FLASH, XFEL) → 60MV/m at the cathode
- CDS booster → up to now final beam energy ~25MeV
- Extensive beam diagnostics
- Photo injector studies (optimization, special regimes etc), no user run
- Test bench for photocathode laser(s)



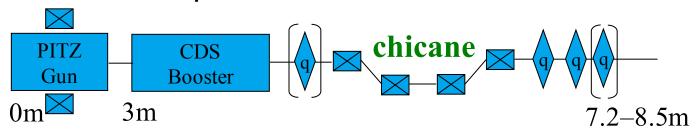
Beam diagnostics at PITZ

Diagnostics for Transverse phase space and Longitudinal phase space

Component	Property	Diagnostics		
Cathode laser	temporal profile	OSS, streak-camera		
	transverse distribution	Virtual cathodes, CCD cameras		
	pulse energy	Energy-meter, PMT		
	position stability	Quadrant-diode		
Electron beam	bunch charge	Faraday cups, Integrating current transformers		
	beam position	BPMs		
	longitudinal momentum	Dipoles+ dispersive arms (LEDA, HEDA1,2)		
	transverse distribution	YAG and OTR screens with CCD cameras		
	transverse phase space (emittance)	Slit masks (EMSY1,2,3), quadrupoles, tomography module		
	longitudinal profile	Radiators (straight section) + streak read-out, upcoming - Transverse Deflecting Cavity		
	longitudinal phase space	Radiators (dispersive arms) + streak read-out, upcoming – Transverse Deflecting System (TDS)+HEDA2 (slice energy spread)		
	slice emittance	HEDA with booster off-crest, upcoming →TDS+HEDA2		

Idea and motivation

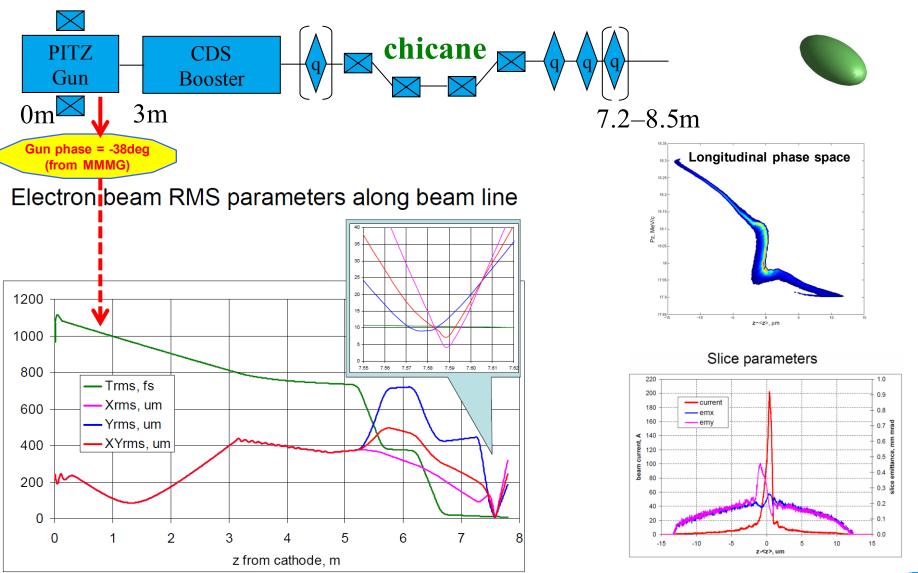
- Short bunch production for XFEL (single spike lasing)
- Pre-experiments at PITZ and FLASH



Short pulse production by off-crest operation of the RF gun

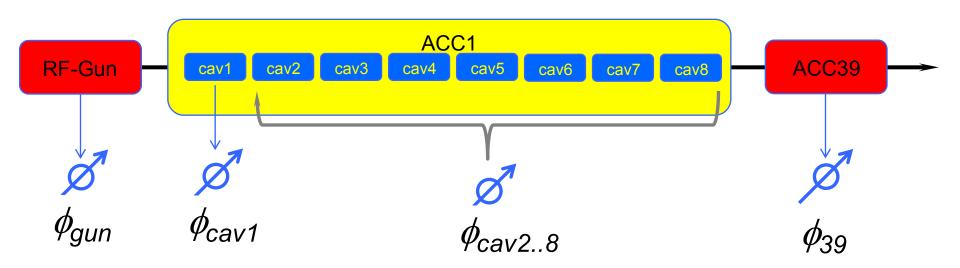
- Try ballistic bunching from the gun using short cathode laser pulses at low charges (~1pC)
- BD simulation for the PITZ setup (slightly modified = + small magnetic chicane) demonstrate the possibility to produce rather short bunches (~10fs)

Modified PITZ Setup:


Try different laser shapes:

Q= pC	$\sigma_t = 1.2$ ps	FWHM=).4ps	$\sigma_t = lps$		
σ_{t}	9.1 fs	9.68 fs	10.3 fs	~10fs	ì
I _{peak}	~60A	6590A	~200A	~10fs All not yet fully optimized	
σ_{x}	8.5 μm	5.4…13.4 μm	7.7 μm		
σ_{y}	8.8 μm	9.94.7 μm	10.4 μm	> <10μm²	

Short pulse production by off-crest operation of the RF gun



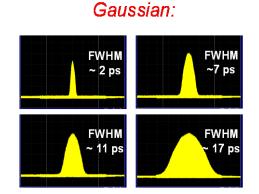
Short pulse production by off-crest operation of the RF gun

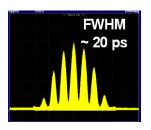
Photo injector optimization for a short bunch production:

- PITZ (extensive tests, study domain of machine parameters):

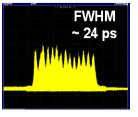
- Gun phase
- CDS booster phase*
- FLASH (more knobs to tune):
 - Gun phase
 - ACC1 phases:
 - 1st cavity phase for the ballistic bunching
 - 2nd 8th cavity phases and 3rd harmonic cavity for the efficient compression

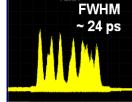






Double pulse production – PITZ Cathode laser pulse shaping


PITZ Cathode laser pulse shaping



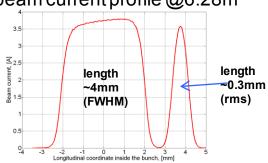


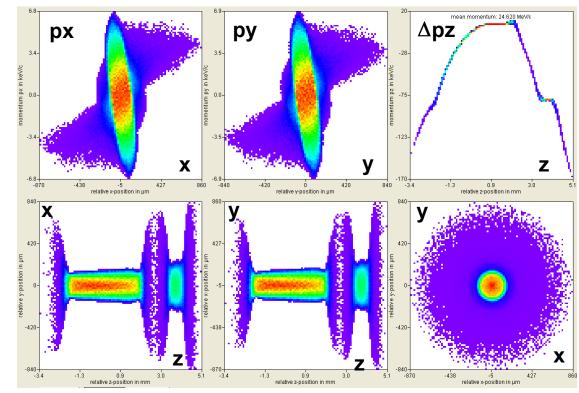
Simulated pulse-stacker

→ Very high flexibility of photo cathode laser system running at PITZ !!!



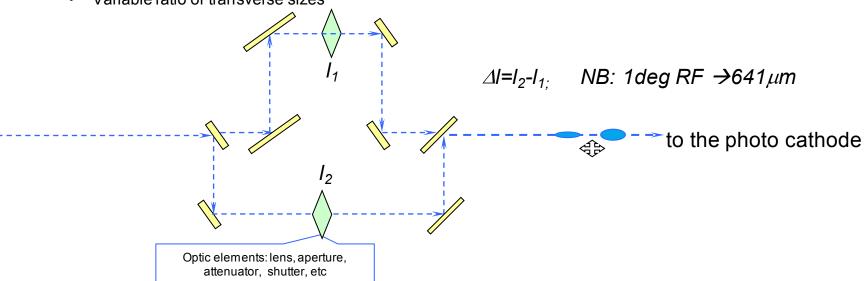
Double pulse production - to test particle driven wakefield acceleration (or other application?)


- Using the flexibility of the present photocathode laser system:
 - Total maximum length ~25ps, minimum separation ~2ps
 - Same transverse size


Beam dynamics simulations (60pC) – M.Khojoyan, PITZ

Cath.lasertemp.profile

E-beam current profile @6.28m



Double pulse production

- ■Cathode laser at FLASH: no temporal pulse shaper (like at PITZ) → Split the cathode laser pulse into 2 (or more?) pulses:
 - Same temporal profile
 - · Adjustable delay
 - · Variable ratio of intensities
 - Variable ratio of transverse sizes

- Check the beam dynamics (its compatibility for both pulses) in the linac
- Experimental tests at PITZ and FLASH → particle driven wakefield acceleration (?plasma cell available?)
- Other applications?

Summary

- Short pulse production by off-crest gun operation
 - Proof of principle at PITZ (mainly gun phase tuning)
 - More knobs at FLASH
- Double pulse production (for e.g. wakefield acceleration)
 - Using PITZ cathode laser pulse shaper
 - At PITZ and FLASH using splitting scheme

