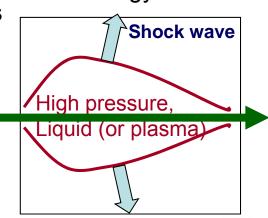
Material stress tests induced by high power electron beams

O. S. Adeyemi², V. Kovalenko², G. Moortgat-Pick², M Schmitz¹, S. Riemann¹, F. Staufenbiel¹, A. Ushakov² ¹DESY ²Universität Hamburg

- Motivation
- What can be measured?
 - Expected material stress
 - Experimental setup
- Safety aspects
 - Shielding against radiation
 - Activation of test material
- Summary

Motivation

- Intense beams high peak energy deposition density in materials
 - Targets, Collimators, spoilers, exit windows...
 - Thermal stress, high pressure (even shock waves)
 - → damage or lifetime reduction of material (e.g. at ILC)
- Information exists, but:
 - Models and codes to describe huge stress in materials have to be tested in experiments
 - Experimental limits for e- beams:
 - SLC target (W) ⇔ benchmark: max energy deposition <35J/cm³,
 - damage tests at KEK (W) and SLAC FFTB (Cu),
 - FLASH (Ag coated C): Schmitz et al. ⇔ 30 FLASH bunches (40x40um^2) are no problem
 - Fatigue stress which superposes material weakening by radiation
- Beam test facility:
 - Test facilities for protons and ions (HiRadMat) cannot compensate for studies with electron beams



What can be measured?

- Energy deposition along the beam path
 - instantaneous temperature rise
 - instantaneous pressure rise
- Depending on energy deposition density, interaction duration and material: stress waves
 - Scenario 1: elastic deformation
 - Scenario 2: plastic/elastic domain
 - Permanent deformations
 - Scenario 3: shock waves:
 - Pulse length shorter than time that sound travels through target
 - Very high energy deposition from single bunches, and/or energy deposition from multiple bunch trains superposes
 - Strains and pressure exceed critical value
 - Hydrodynamical models
- → Measurement of stress waves
- → Optical inspection

GEMEINSCHAFT

→ Material properties after irradiation

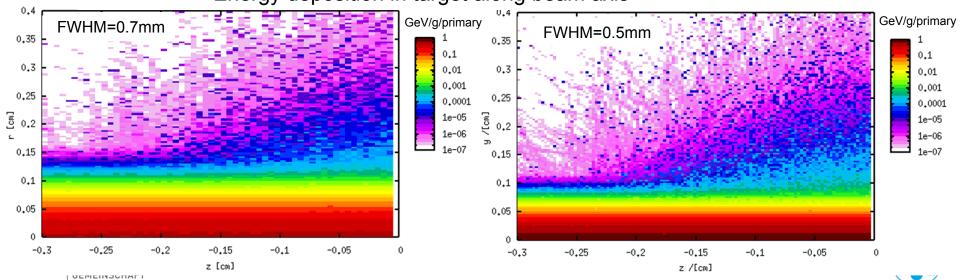
beam

Expected material stress

Assume electron beam:

1 GeV, 800 bunches, 10 Hz

– Ti target: 3mm thick, r = 1cm [5mm]


– Beam size: FWHM = 700um, 500um

Stress after 1 bunch train (0.1s)

Ti properties: v_{sound} = 4140m/s, T_{melt} = 1668 C, T_{vap} = 3287 C

σ [μm]	$\Delta T_{\text{max}}[K]$	∆P [MPa]	surface velocity [m/s]
350	~300	~200	~0.01 (long), 0.001 [0.002] (radial)
250	~700	>400	~0.02 (long), 0.002 [0.004] (radial)

Energy deposition in target along beam axis

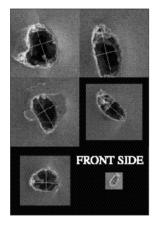
Material stress tests / 4.10.11 / FLASH Workshop 2011

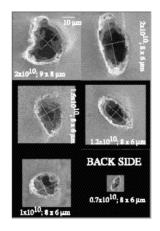
Velocity Interferometer System for Any Reflector

1 GeV e

- VISAR (Laser Doppler Vibrometer, LDV)
 - Commercial systems available
 - Sensitivity: 0.02m/s [0.002m/s] with 50ns [500ns] resolution time

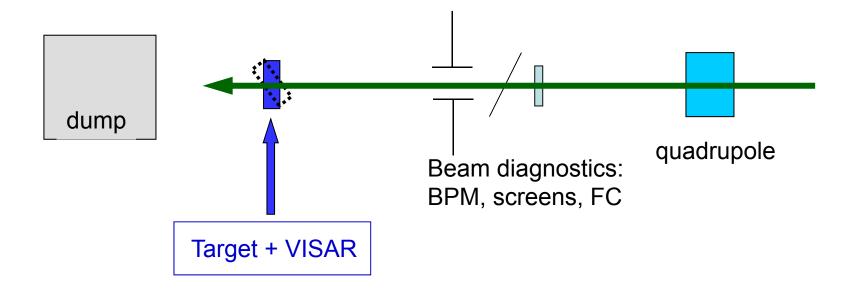
(see http://www.mfaoptics.com/FiberDVI.htm)


→ measurement of shockwaves possible



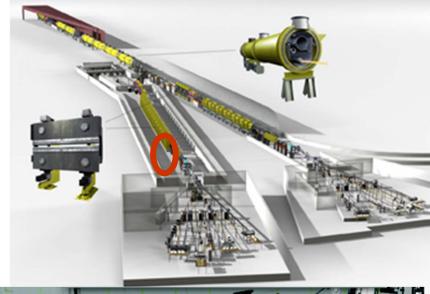
Further tests

- serious damage:
 - material ejection from surface ⇔ Visual inspection after irradiation
 - Damage should be avoided. Experience from 'damage experiments':
 - M. Ross et al., SLAC-PUB-8605, 2000, "Single pulse damage in copper"



- KEK: Kuriki et al., PRSTAB **9**, 071001 (2006):
 - En dep. of 0.6-4.6 J/cm³ in W for e-beam with 3789 J/us beam ⇔ damage
 - En dep. of 0.3-1.1 J/cm³ in W for e-beam with 33-131J/us beam ⇔ no damage
- Fatigue stress?
 - studies necessary to understand how to evaluate
 - Long term irradiation increases safety requirements and restrictions

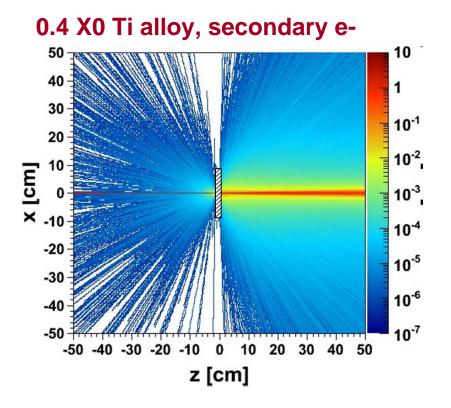
Experimental Setup

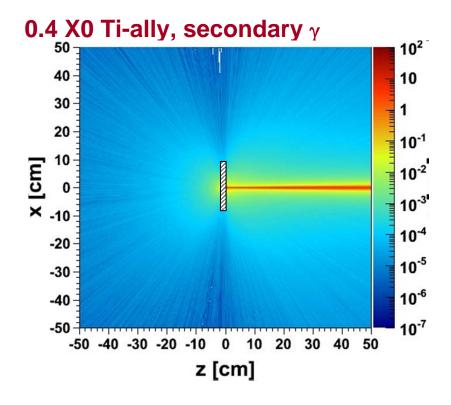

- Material stress:
 - 'tuned' by beam size
 - → Quadrupole ⇔ focus beam to test material
 - → beam diagnistics needed
- Radiation issues: disrupted beam has to be absorbed in the dump



Implementation into FLASH

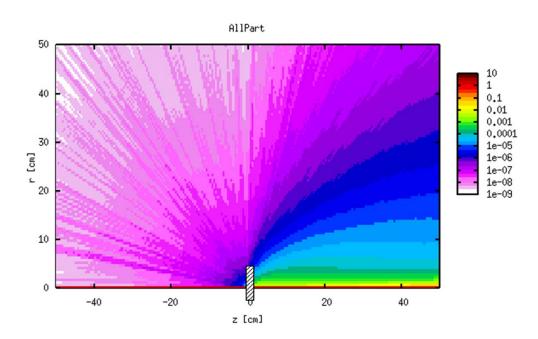
For **safety reasons**, the experiment must be located near the beam dump


Experiment and dump aboveground

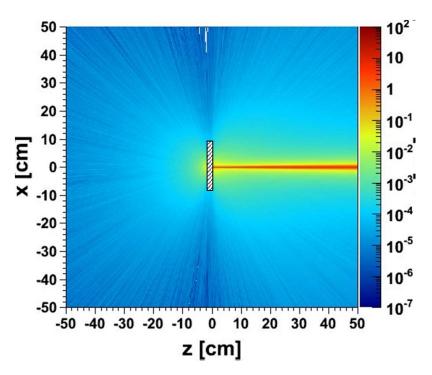


Particle distribution after target

Ideenmarkt Nov. 2010



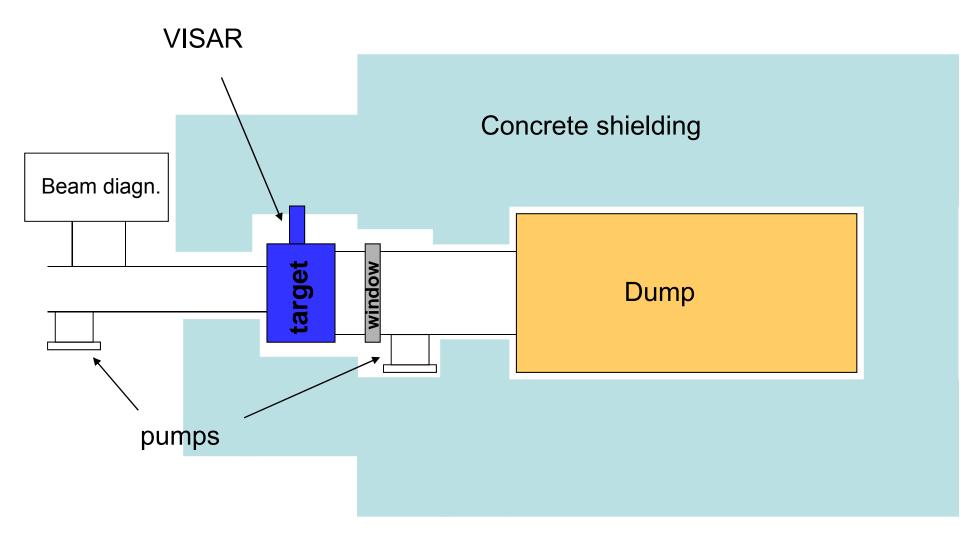
Particles carrying ≈99% of incoming power hit dump at distance 50cm within Ø 20 cm if target thickness = 0.4X₀


→ thin targets are recommended

Particle distribution after target

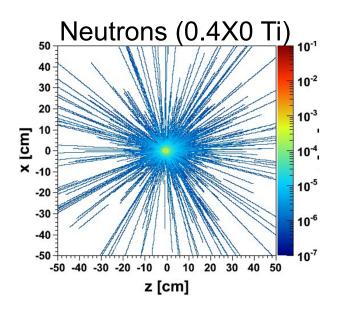
0.08 X0 Ti alloy, secondary particles

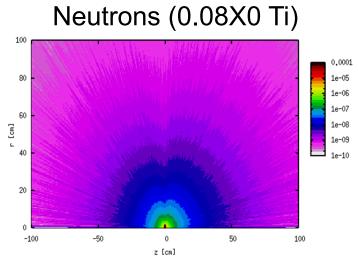
0.4 X0 Ti-alloy, secondary γ



Radiation safety requirements can be fulfilled using thin targets

Beam Dump (not to scale)

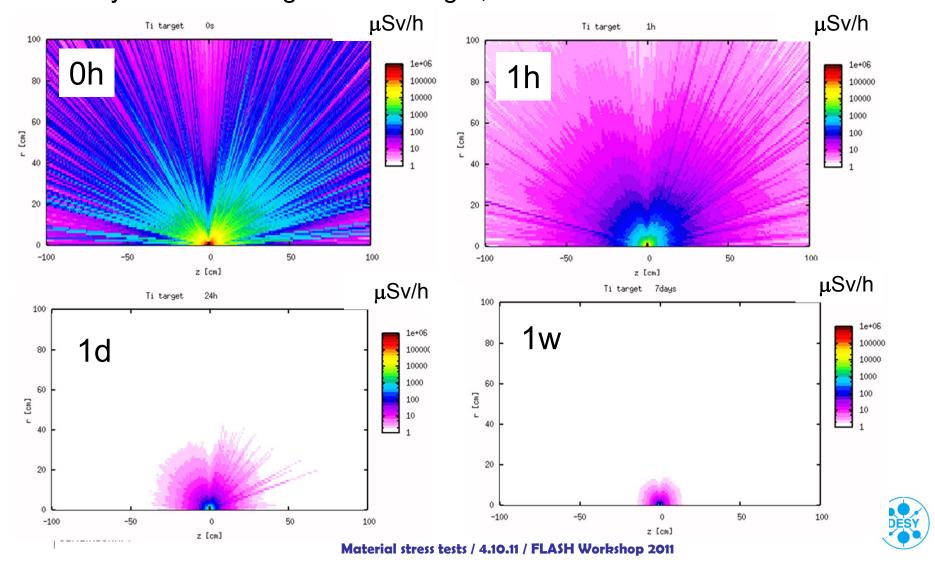

Neutron production in target and shielding


electron beam assumption:

1 GeV, 1nC, 800 b/train, 10Hz

- Thin target (0.4X₀), low Z (Ti)
 - → 2x10⁻³ neutrons per incoming e → ~1.9 m concrete (normal) ⇔ 2mSv/a
- Thin target (0.08X₀), low Z (Ti)
 - → 2x10⁻⁵ neutrons per incoming e → ~1.9 m concrete (normal) ⇔ 2mSv/a

- Thick targets not recommended
- Dump also needs neutron shielding



Target activation

- Assumption: 1 hour exposure
 - 1GeV e-, 1nC/bunch, 800 bunches/train, 10 Hz
 - Cylindrical Ti target: 3mm length, 1cm diameter

Target activation

- Assumption: 1 hour exposure
 - 1 GeV e-, 1nC/bunch, 800 bunches/train, 10 Hz
 - Cylindrical Ti target: 3mm length, 1cm diameter
- Dose rates (ambient dose equivalent rate) at z=0, r=100cm:

Cooling Time	Dose rate [mSv/h]
0 second	~0.05
1 hour	~0.01
1 day	<0.001
1 week	<0.001

Summary

- Electron beam at FLASH offers great opportunity for accelerator material tests
 - material stress and shock wave models and the corresponding codes can be tested
 - Results are important for linear e+e- collider communities
- Material tests require
 - Space in beam line near the dump, test chamber
 - Quadrupole to focus the beam, flexible choice of beam intensity
 - Beam diagnostics
 - Instrumentation to measure surface vibration and temperature
 - safety measures, in particular radiation aspects, determine final layout
- Ongoing work, plans:
 - detailed simulations specified to the experimental conditions at FLASH
 - Optimization of test target dimensions and specifications
 - Pay attention to HiRadMat experiences

But we do not have the resources to built and maintain a separate beamline

