$ilde{ au}$ searches at future e⁺e⁻ colliders

Mikael Berggren¹, Terasa Núñuez¹, Jenny List¹

¹DESY, Hamburg

FC@DESY, March 2025

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

< ロ > < 同 > < 回 > < 回 >

Motivation for $\tilde{\tau}$ searches

For SUSY searches it is a Good Idea (TM):

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP

The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.

• Well motivated:

- Due to mixing, likely to be the lightest sfermion.
- Can do co-annihilation.
- Least constrained from data.

• Difficult:

- Due to mixing, has lower cross-section than other sleptons and squarks
- Decays partially invisibly.
- Mixing can further reduce detectability.

Motivation for $\tilde{\tau}$ searches

For SUSY searches it is a Good Idea (TM):

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP
- The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.
 - Well motivated:
 - Due to mixing, likely to be the lightest sfermion.
 - Can do co-annihilation.
 - Least constrained from data.

• Difficult:

- Due to mixing, has lower cross-section than other sleptons and squarks
- Decays partially invisibly
- Mixing can further reduce detectability.

Motivation for $\tilde{\tau}$ searches

For SUSY searches it is a Good Idea (TM):

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP
- The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.
 - Well motivated:
 - Due to mixing, likely to be the lightest sfermion.
 - Can do co-annihilation.
 - Least constrained from data.
 - Difficult:
 - Due to mixing, has lower cross-section than other sleptons and squarks
 - Decays partially invisibly
 - Mixing can further reduce detectability.

The $\tilde{\tau}$...

- Two weak hypercharge eigenstates ($\tilde{\tau}_R, \tilde{\tau}_L$), not mass degenerate
- Mixing yields to the physical states (\$\tilde{\tau}_1, \$\tilde{\tau}_2\$), the lightest one being likely to be the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - Pair produced in s-channel via Z^0/γ exchange. Low σ since $\tilde{\tau}$ -mixing suppresses coupling to the Z^0 .
 - Decay to LSP and $\tau,$ implying more difficult signal identification than the other sfermions

Limits at LEP and LHC/HL-LHC

• Unpublished LEP combination, LEPSUSYWG/04-01.1

- PDG: Best published limit (DELPHI) 81.9 GeV (any mixing if ΔM > 15 GeV), 26.3 for any mixing and ΔM
- Limited by energy, luminosity and trigger
- LHC : ATLAS modeldependent (only for τ̃_R), excludes only very high ΔM. No discovery potential..
- HiLumi: exclude somewhat higher τ̃_R masses for very high ΔM. No discovery potential..

< ロ > < 同 > < 回 > < 回 >

Limits at LEP and LHC/HL-LHC

• Unpublished LEP combination, LEPSUSYWG/04-01.1

- PDG: Best published limit (DELPHI) 81.9 GeV (any mixing if ΔM > 15 GeV), 26.3 for any mixing and ΔM
- Limited by energy, luminosity and trigger
- LHC : ATLAS modeldependent (only for τ̃_R), excludes only very high ΔM. No discovery potential..
- HiLumi: exclude somewhat higher τ̃_R masses for very high ΔM. No discovery potential..

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)

э

Mikael Berggren (DESY)

Mikael Berggren (DESY)

э

Mikael Berggren (DESY)

э

Mikael Berggren (DESY)

э

 $\tilde{\tau}$ properties at e⁺e⁻ colliders

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Production & decay

Mikael Berggren (DESY)

Mikael Berggren (DESY)

э

★ ∃ > < ∃ >

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy

イロト 不得 トイヨト イヨト 二日

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy Irreducible

• 4-fermion production with two of the fermions being neutrinos and two τ 's

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy Irreducible

 4-fermion production with two of the fermions being neutrinos and two τ's

Almost Irreducible

- $e^+e^- \rightarrow \tau \tau$, $ZZ \rightarrow \nu \nu II$, $WW \rightarrow I \nu I \nu$ $(I = e \text{ or } \mu)$
- $e^+e^- \rightarrow \tau \tau + ISR$, $e^+e^- \rightarrow \tau \tau ee$, $\gamma \gamma \rightarrow \tau \tau$
- Mis-identification of *τ*'s or of missing momentum

4 3 5 4 3

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

Bino LSP, m_{-} = 200 GeV, ΔM = 100 GeV Events ixing angle 0 dec 20 dec 40 dec 400 50 deg 55 dec 90 der 300 200 100 20 10040 60 80 120 p_π [GeV]

< ロ > < 同 > < 回 > < 回 >

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

Bino LSP, m_{-} = 200 GeV, ΔM = 100 GeV Events ixing angle 0 dec 20 den 40 dec 400 50 dec 55 dec 90 der 300 200 100 20 40 60 80 100 120 p_π [GeV]

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at \sim 55°

A (10) A (10)

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at \sim 55°

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- At ILC, both beams are polarised, and same luminosity LR and R
 Neyman-Pearson's lemma applied to a counting experiment
- Use Likeli weight bo • Then, the \sim uniform with a slic $N_{\sigma} = \frac{\sum_{i=1}^{n_{samp}} s_i \ln (1 + s_i/b_i)}{\sqrt{\sum_{i=1}^{n_{samp}} n_i [\ln (1 + s_i/b_i)]^2}}$ (n_i is either $s_i + b_i$ (exclusion), or b_i (discovery))

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at $\sim 55^{\circ}$

4 3 > 4 3

< ロ > < 同 > < 回 > < 回 >

ILD full simulation analysis: MC samples

- Use the IDR 500 GeV FullSim samples
- Covering the full SM background with all $e^+e^-/e^{+/-}\gamma/\gamma\gamma$ processes (> 10⁷ events)
- Beam-spectrum and pairs background from GuineaPig, low P_T hadrons from Barklow generator.
- Signal
 - Spectrum obtained with Spheno.
 - Generated with Whizard
 - Simulated with SGV, with pairs and low P_T hadrons extracted from full-sim
 - 10000 events per point and polarisation,
 - 1867 mass-points, 37×10^6 events.

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$ -events "must" have

- Missing energy: *E_{miss}* > 2 × *M_{LSP}* GeV
- Visible mass: $M_{vis} < 2 \times (M_{\widetilde{\tau}} M_{LSP})$ GeV

Well-known initial state and hermeticity !

- Two well identified τ 's and little other activity
- Maximum jet momentum:

$$P_{max} = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{M_{LSP}}{M_{\tilde{\tau}}} \right)^2 \right) \left(1 + \sqrt{1 - \frac{4M_{\tilde{\tau}}^2}{s}} \right)$$

Clean final state with no pile-up.

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$ -events "must" have

- Missing energy: $E_{miss} > 2 \times M_{LSP}$ GeV
- Visible mass: M · < 2 × (M · · · M · · ·) GoV

Well-known ir Above 95 % signal efficiency after these

- Two well cuts (excluding for the τ -identification)
- Maximum jet momentum:

$$P_{max} = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{M_{LSP}}{M_{\tilde{\tau}}} \right)^2 \right) \left(1 + \sqrt{1 - \frac{4M_{\tilde{\tau}}^2}{s}} \right)$$

Clean final state with no pile-up.

A (10) A (10)

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$'s "might" have, but background "rarely" has

- Missing P_T
- Large acoplanarity
- Large P_T wrt. thrust-axis (ρ)
- High angles to beam

properties of irreducible sources of background

- Charge asymmetry $(q_{jet} \cos \theta_{jet})$
- Difference between visible mass and Z mass
- Properties that background often "does not" have
 - Low energy in small angles
 - Low energy of isolated neutral clusters

 e^+e^- beams are accompanied by real and virtual photon Interactions between these produce:

- Low p_T hadrons
 - At ILC500 $\langle N\rangle{=}1.05/BX,$ CLIC380(3000) $\langle N\rangle{=}0.17(3.1)/BX,$ FCCee $\langle N\rangle$ =0/BX
 - Low p_{T} hadrons are "physics": the total number collected scale with $\int \mathcal{L}$
- e⁺e⁻pairs
 - At ILC, 10^5 pairs per bunch crossing, but only \sim 10 will hit any tracking detector.
 - Much reduced at FCCee, assumed absent in our recast.

 $\gamma\gamma$ interactions are independent of the e⁺e⁻ process, but can happen simultaneously to it (overlay-on-physics events) or not (overlay-only events)

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- $\Delta M = 10 \text{ GeV}$
- Larger effect for low △M, hardly any for △M > 10 GeV.

Overlay-only events: Similar for ILC and FCCee.

- Need reduction-factor ~ 10⁻¹⁰, which can be achieved.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- $\Delta M = 10 \text{ GeV}$
- Larger effect for low △M, hardly any for △M > 10 GeV.

Overlay-only events: Similar for ILC and FCCee.

• Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- *△M* = 10 GeV
- Larger effect for low ΔM, hardly any for ΔM > 10 GeV.

Overlay-only events: Similar for ILC and FCCee.

- Need reduction-factor ~ 10⁻¹⁰, which can be achieved.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Mikael Berggren (DESY)

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

- Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.
 - $\Delta M = 3 \text{ GeV}$

 - Larger effect for low ΔM, hardly any for ΔM > 10 GeV.

Overlay-only events: Similar for ILC and FCCee.

- Need reduction-factor $\sim 10^{-10},$ which can be achieved.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Mikael Berggren (DESY)

 $\tilde{\tau}$ searches

FC@DESY, March 2025 13/22

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

- Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.
 - $\Delta M = 3 \text{ GeV}$

 - Larger effect for low ΔM, hardly any for ΔM > 10 GeV.

Overlay-only events: Similar for ILC and FCCee.

- Need reduction-factor $\sim 10^{-10},$ which can be achieved.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.
- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

Impact of specific ILD/ILC features: Energy, triggerless operation

Energy, the main advantage for any linear option, a no-brainer:

 increase in centre-of-mass energy covers much more parameter space, up to close to kinematic limit

Triggerless operation:

• Big advantage when searching for unexpected signatures Possible at linear colliders due to low collision frequency, might not possible at circular colliders, but we will assume it will.

Impact of specific ILD/ILC features: Polarisation

Polarisation:

- Combination different polarisation samples allows for equal sensitivity to all mixing angles
- Polarisation provides higher sensitivity: Likelihood ratio weighting.
- Both beams polarised: Effective luminosity for s-channel processes increased, +24 % for ILC wrt. FCCee.

Clear edge for ILC - CLIC/C3 only e⁻ polarisation, FCCee has no polarisation. CepC studies if polarisation *might* be possible.

Impact of specific ILD/ILC features: Polarisation

Polarisation:

- Combination different polarisation samples allows for equal sensitivity to all mixing angles
- Polarisation provides higher sensitivity: Likelihood ratio weighting.
- Both beams polarised: Effective luminosity for s-channel processes increased, +24 % for ILC wrt. FCCee.

Clear edge for ILC - CLIC/C3 only e⁻ polarisation, FCCee has no polarisation. CepC studies if polarisation *might* be possible.

Impact of specific ILD/ILC features: Luminousiy, Beam-induced backgrounds

Luminosity, the strong points for FCCee and CepC.

- But: higher luminosity gives only very little improvement
 - Ex. 2 to 5 (10) ab^{-1} at 250 GeV for $\Delta M = 2$ GeV changes excl. limit on $M_{\tilde{\tau}}$ from 112 to 117 (117) GeV, negligible for $\Delta M = 10$ GeV

Beam-induced backgrounds:

- Overlay-on-physics: Due to low per-BX-luminosity this is not an issue for the circular colliders.
- Overlay-only: to first order, similar for both options (goes with total luminosity)
- The details enter: Smaller beam-spot, triggerless operation, thinner beam-pipe and vertex detector, polarisation, all makes the linear options more powerful

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

 ILD at ILC: hermetic to 6 mrad - Any detector at FCCee; hermetic to 50 mrad.

- Check the eff egenerator lev
- Very bad for , $\gamma\gamma \rightarrow \mu\mu$ for (beam-remna)
- ... but less sc is from the nε

 However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Mikael Berggren (DESY)

FC@DESY, March 2025 18/22

< ロ > < 同 > < 回 > < 回 >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Check the effect on γγ background at generator level.
- Very bad for $\tilde{\mu}$: P_T miss of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Check the effect on γγ background at generator level.
- Very bad for $\tilde{\mu}$: P_T miss of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

 $\tilde{\tau}$ searches

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Check the effect on γγ background at generator level.
- Very bad for $\tilde{\mu}$: $P_{T miss}$ of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Mikael Berggren (DESY)

FC@DESY. March 2025

- 3

18/22

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

 $\tilde{\tau}$ searches

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Check the effect on γγ background at generator level.
- Very bad for μ̃: P_{T miss} of μ-pair for γγ → μμ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Mikael Berggren (DESY)

FC@DESY. March 2025

18/22

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Check the effect on γγ background at generator level.
- Very bad for μ̃: P_{T miss} of μ-pair for γγ → μμ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Mikael Berggren (DESY)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ \sqrt{B} is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so S_{FCCee,250} = 0.8 ×S_{ILC,500}; B remains 4 times higher.
- So S/ \sqrt{B} at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ $\sqrt{\rm B}$ is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so S_{FCCee,250} = 0.8 ×S_{ILC,500}; B remains 4 times higher.
- So S/ \sqrt{B} at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ \sqrt{B} is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so $S_{FCCee,250} = 0.8 \times S_{ILC,500}$; B remains 4 times higher.
- So S/ \sqrt{B} at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ \sqrt{B} is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so $S_{FCCee,250} = 0.8 \times S_{ILC,500}$; B remains 4 times higher.
- So S/√B at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ \sqrt{B} is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so $S_{FCCee,250} = 0.8 \times S_{ILC,500}$; B remains 4 times higher.
- So S/ \sqrt{B} at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV
- If S/B is the same, S/ \sqrt{B} is twice better at 250, if the efficiency is the same.
- But we lose 4/5 of the signal (but background is the same) at FCCee, so $S_{FCCee,250} = 0.8 \times S_{ILC,500}$; B remains 4 times higher.
- So S/ \sqrt{B} at FCCee at 250 would be 0.4 of that at ILC at 500 (where it would be for 2 times higher SUSY masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the ILC can do Likelihood ratio weighting of different polarisation samples....

- The Berggren conjuncture: If all kinematic cuts and SUSY masses are reduced by one half, the S/B at 250 if is the same as at 500.
- $\sigma \propto 1/s \Rightarrow$ both S and B are 4 times higher at 250 GeV • If Uptake
- If Optake cy is th • With ILC-500 and ILD acceptance, but assuming no polarisation of either beam, $\Delta(M) = 10$ GeV and
- F($M_{\tilde{\tau}} = 245 \text{ GeV}$ could be excluded at $2.2 \sigma \Rightarrow \Delta(M)$ = 5 GeV and $M_{\tilde{\tau}} = 122.5 \text{ GeV}$ cannot be excluded
 - (Where it media be for 2 times righter boot i masses).
- ⇒ For FCCee at 250 to get the same S/√B as at ILC 500 (for twice the SUSY masses), 6.25 times more luminosity is needed, i.e. 25 ab⁻¹, 2.5 times the expected, for 4 experiments summed.
- In addition, the II C can do Likelihood ratio Weighting of different 200 Mikael Berggren (DESY)
 F searches
 FC@DESY, March 2025
 19/22

- At low mass-differences far from the kinematic limit the situation is different.
- $\sigma \propto \beta^3 \Rightarrow$ much higher cross-sections at lower masses \Rightarrow can allow much higher background.
- At ILD/ILC, we did not need to optimise cuts in this region: exclusion/discovery was easily achived down to $\Delta M = M_{\tau}$, once $M_{\tilde{\tau}}$ was less than ~ 240 GeV.
- The low △M region is much more sensitive to details of the machine background and detectector perfomance, so just doing the scaling will be a rather crude estimate.
- Nevertheless, we did this.

- At low mass-differences far from the kinematic limit the situation is different.
- $\sigma \propto \beta^3 \Rightarrow$ much higher cross-sections at lower masses \Rightarrow can allow much higher background.
- At ILD/ILC, we did not need to optimise cuts in this region: exclusion/discovery was easily achived down to $\Delta M = M_{\tau}$, once $M_{\tilde{\tau}}$ was less than ~ 240 GeV.
- The low △M region is much more sensitive to details of the machine background and detectector perfomance, so just doing the scaling will be a rather crude estimate.
- Nevertheless, we did this.

- At low mass-differences far from the kinematic limit the situation is different.
- $\sigma \propto \beta^3 \Rightarrow$ much higher cross-sections at lower masses \Rightarrow can allow much higher background.
- At ILD/ILC, we did not need to optimise cuts in this region: exclusion/discovery was easily achived down to $\Delta M = M_{\tau}$, once $M_{\tilde{\tau}}$ was less than ~ 240 GeV.
- The low △M region is much more sensitive to details of the machine background and detectector perfomance, so just doing the scaling will be a rather crude estimate.
- Nevertheless, we did this.

- At low mass-differences far from the kinematic limit the situation is different.
- $\sigma \propto \beta^3 \Rightarrow$ much higher cross-sections at lower masses \Rightarrow can allow much higher background.
- At ILD/ILC, we did not need to optimise cuts in this region: exclusion/discovery was easily achived down to $\Delta M = M_{\tau}$, once $M_{\tilde{\tau}}$ was less than ~ 240 GeV.
- The low △M region is much more sensitive to details of the machine background and detectector perfomance, so just doing the scaling will be a rather crude estimate.
- Nevertheless, we did this.

FCCee: Assume

- No polarisation, no overlay-on-physics, no background from real γγ (only virtual).
- Estimate γγ → ττ background on generator-level: 30-50 times more at FCCee
- Optimise ρ cut at FCCee (not needed at ILC).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FCCee: Assume

- No polarisation, no overlay-on-physics, no background from real γγ (only virtual).
- Estimate γγ → ττ background on generator-level: 30-50 times more at FCCee
- Optimise ρ cut at FCCee (not needed at ILC).

- Much worse coverage at low ΔM, high-ish M_{τ̃}.
- Maybe possible to exclude down to ΔM=M_τ at lower M_τ, but:
 - Background in the millions: systematics?
 - Other backrounds than $\gamma\gamma \rightarrow \tau\tau$?
 - Other unfavourable machine and detector issues: Beam-spot size, lower B-field, thicker beam-pipe, ...
 - Will need FCCee FullSiM !

- Much worse coverage at low ΔM, high-ish M_{τ̃}.
- Maybe possible to exclude down to ΔM=M_τ at lower M_{τ̃}, but:
 - Background in the millions: systematics?
 - Other backrounds than $\gamma\gamma \rightarrow \tau\tau$?
 - Other unfavourable machine and detector issues: Beam-spot size, lower B-field, thicker beam-pipe, ...
 - Will need FCCee FullSiM !

- Much worse coverage at low ΔM, high-ish M_{τ̃}.
- Maybe possible to exclude down to ΔM=M_τ at lower M_τ, but:
 - Background in the millions: systematics?
 - Other backrounds than $\gamma\gamma \rightarrow \tau\tau$?
 - Other unfavourable machine and detector issues: Beam-spot size, lower B-field, thicker beam-pipe, ...
 - Will need FCCee FullSiM !

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- *τ* mixing and LSP nature influence production cross-sections and decay kinematics ⇒ picked "worst scenario" for actual analysis
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ mass limit only by 5 GeV
- Hermeticity of detector crucial

イロト 不得 トイヨト イヨト 二日

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ̃ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- *τ* mixing and LSP nature influence production cross-sections and decay kinematics ⇒ picked "worst scenario" for actual analysis
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the $\tilde{\tau}$ mass limit only by 5 GeV
- Hermeticity of detector crucial

BACKUP SLIDES

Mikael Berggren (DESY)

 $\tilde{\tau}$ searches

FC@DESY, March 2025 21/22

<ロ> <四> <四> <四> <四> <四</p>
ILD full simulation analysis: Beam-induced backgrounds

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma\gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10 \text{ GeV}$).
- Similar for ILC and FCCee

Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Mikael Berggren (DESY)

ILD full simulation analysis: Beam-induced backgrounds

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma \gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10$ GeV).
- Similar for ILC and FCCee

Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Mikael Berggren (DESY)

ILD full simulation analysis: Beam-induced backgrounds

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma \gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10$ GeV).
- Similar for ILC and FCCee

Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

Mikael Berggren (DESY)