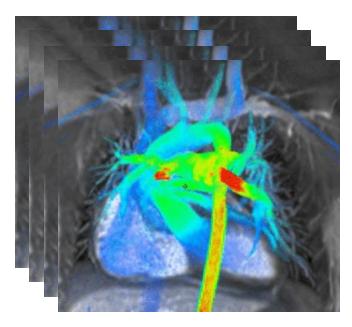


Jonas Kreidelmeyer, Johannes Stengele, Theresa Staufer, Florian Grüner, Rene Werner

4D-KI Track: Directed Diffusion of Colloidal Nanoparticles

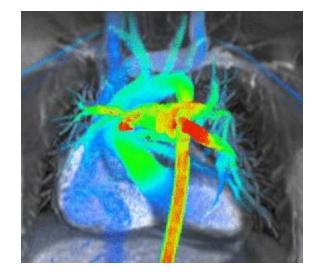
Background

4D KI Track



Temporally Sparse Data

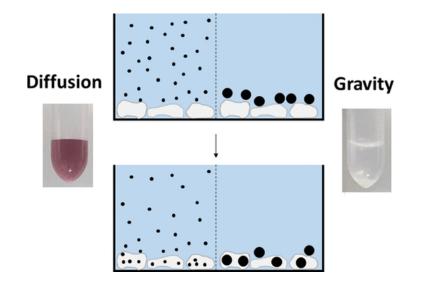
Physics Informed Modelling

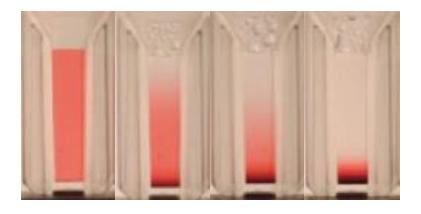


Fully 4D Output

Cardiac MRI flow, Vasanawala, commons.wikimedia.org/wiki/File:Cardiac_MRI_flow.gif

Nanoparticle Diffusion



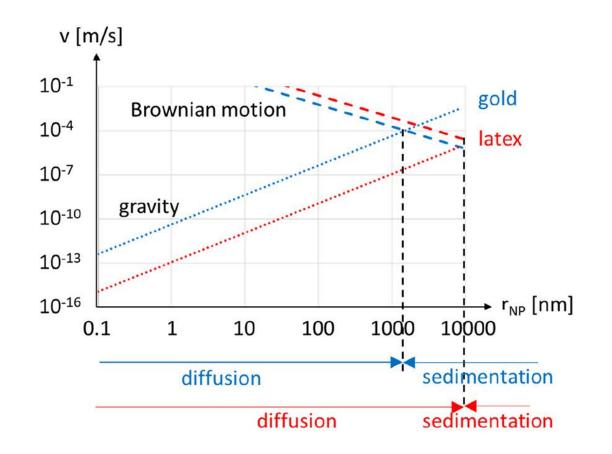


diffusion + gravity \rightarrow directed diffusion \Rightarrow good initial model system for biological processes

Previous work

- Feliu et al (2017) give analytical estimate of critical particle size for sedimentation
- Results do not match experiments

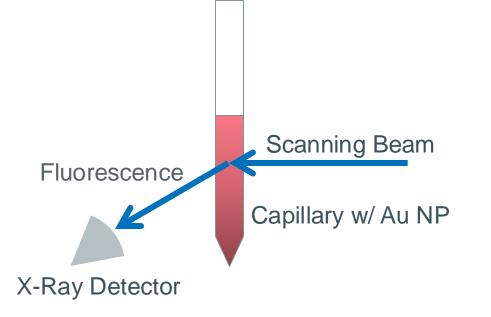
Need to solve describing partial differential equation numerically

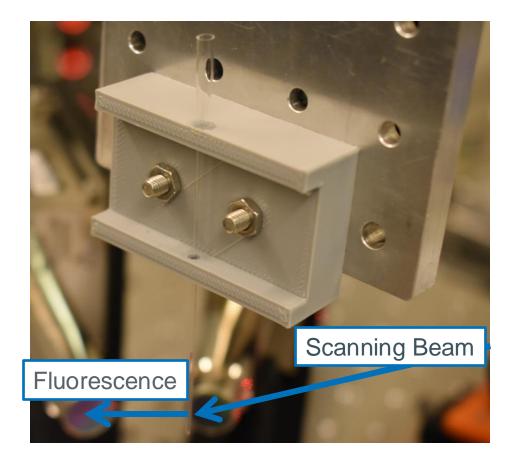


Thanks to: Juan Barrios (providing samples) Jannis Haak (measurement) Florian Ziegler (measurement)

Measurement

Imaging Setup





Signal Model

- Total Signal proportional to tracer conc.
- Known fluor. energies and cross sections
- Fano noise on energy measurements
- Poisson noise on counts
- Smooth background

Directed Diffusion Model

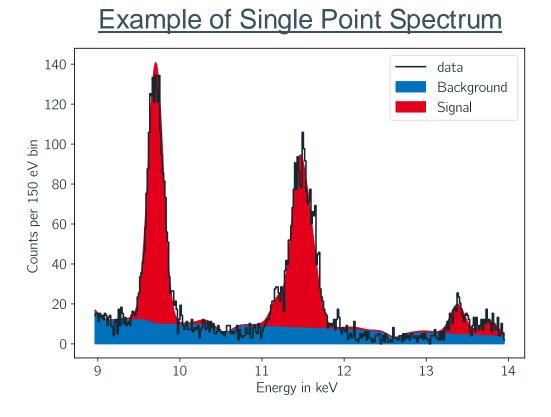
- Concentration profile c(x,t) obeys continuity: $\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x}$
- Flux *J* includes sum of diffusive and gravitational term

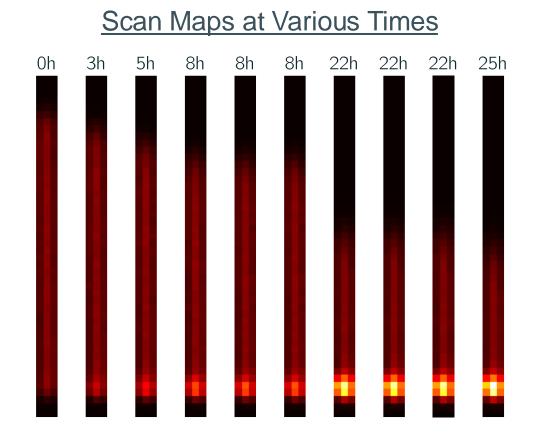
$$J_{\rm diff} = -\frac{\lambda}{r_{\rm H}} \frac{\partial c}{\partial x}$$
$$J_{\rm grav} = \mu \frac{r_S^3}{r_H} c$$

- r_H hydrodynamic radius
- r_S solid radius
- c(x,t) concentration field
- λ, μ apriori known constants

- Two counteracting effects:
 - Diffusion —> homogeneous concentration profile
 - Gravity/Buoyancy —> sedimentation and separation of solvent and solute

Tracer Quantification





Physics Informed Modelling

Physics Informed Neural Networks

• Neural Networks trained to solve supervised learning task while respecting physical laws

 $\frac{\partial c}{\partial t} + \mathcal{N}_{\nu}[c] = 0, \ x \in \Omega, \ t \in [0, T]$

c(x,t) - unknown solution

- $\Omega \subset \mathbb{R}^D$ spatial domain
- \mathcal{N}_{ν} differential operator
- ν potentially unknown parameters
- Neural Network which outputs estimate

 $\hat{c}(x,t) = NN_{\nu}(x,t)$

• Loss weighted sum of data term and PDE residual

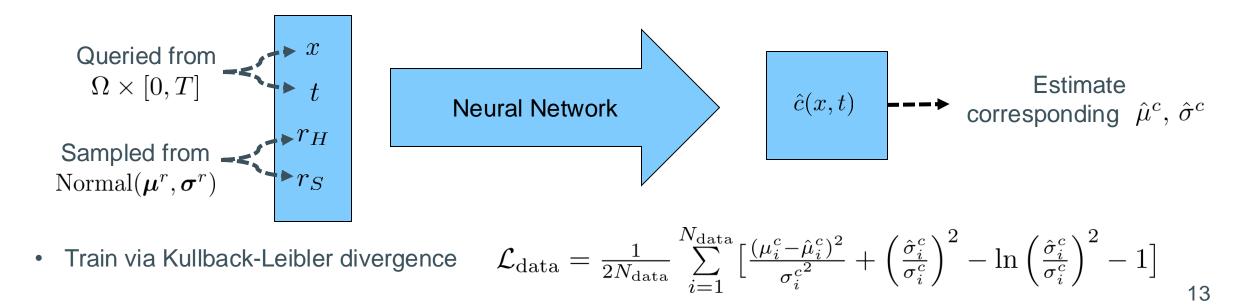
$$\mathcal{L} = \mathcal{L}_{\text{data}} + \alpha \mathcal{L}_{\text{PDE}}$$

Measurement data $\{x_i, t_i, c_i\}_{i=1}^{N_{\text{data}}}$

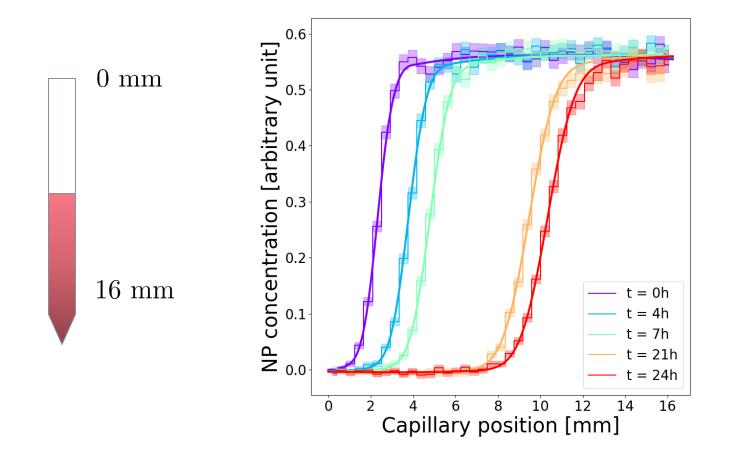
Collocation points $\{x_j, t_j\}_{j=1}^{N_{col}}$

Stochastic Parameters and Output

- Estimate unknown solid and hydrodynamic radius, \mathcal{N}_{ν} with $\nu = \{r_H, r_S, \lambda, \mu\}$
- Data is subject to Gaussian noise $c_i \sim \text{Normal}(\mu_i^c, \sigma_i^c) \Rightarrow \{x_i, t_i, \mu_i^c, \sigma_i^c\}_{i=1}^{N_{\text{data}}}$
- Radii estimates with uncertainty $(r_H, r_S) \sim \text{Normal}(\mu^r, \sigma^r)$



4D Interpolation and Radii Estimates



- Continuous 4D interpolation in $\Omega \times [0,T]$
- $r_S, r_H \approx \text{TEM}$ and DLS measurement

 $r_H = 48.1 \text{ nm} \pm 9.0 \text{ nm}$ $r_S = 47.7 \text{ nm} \pm 3.0 \text{ nm}$

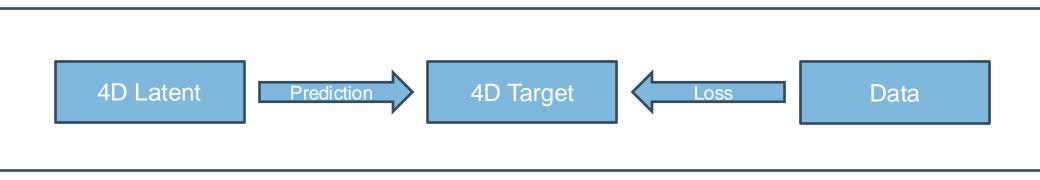
Outlook

Integration of Steps

Current Approach



Generative Model



Simulations

