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Simulations relate fundamental physical structures to observable 
quantities.
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Motivation

Complex chain 
 of simulations


Simulation-aided 
inverse problems




Simulations relate fundamental physical structures to observable 
quantities, but are computationally very expensive.
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Motivation

https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf

Example for collider 
physics, similar issues 
in all domains



Simulations relate fundamental physical structures to observable 
quantities, but are computationally very expensive.


They are crucially required for research in particle physics, hadron- 
and nuclear physics, astro-particle physics, and astronomy. 
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Motivation

Experimental particle physics 
probes nature at length 
scales of 10-18 meters.

The observable 
universe has a diameter 
of 1027 meters. 

Between particle 
physics and 

astronomy, KISS 
covers 45 orders of 

magnitudes.



Simulations relate fundamental physical structures to observable 
quantities, but are computationally very expensive.


They are crucially required for research in particle physics, hadron- 
and nuclear physics, astro-particle physics, and astronomy. 
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Motivation

Experimental particle physics 
probes nature at length 
scales of 10-18 meters.

The observable 
universe has a diameter 
of 1027 meters. 

United by scientific 
questions and 
key methods



Simulations relate fundamental physical structures to observable 
quantities.


They are crucially required for research in particle physics, hadron- 
and nuclear physics, astro-particle physics, and astronomy. 
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Motivation

KISS develops and researches generative AI tools 
to increase the efficiency of scientific simulations 
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Composition

insbesondere die Entwicklung von generativen Modellen und netzwerkbasierte Samplingmethoden
für Simulationen. Die LMU hat in den letzten Jahren mit zwei Software­Koordinatoren die Software­
entwicklung bei Belle II maßgeblich gestaltet. Die Belle II Arbeitsgruppe zu multivariaten Analysen
und maschinellem Lernen wurde von der LMU initiiert. Im Rahmen des ErUM­Data­Pilotprojekts wur­
de mit Partnern aus Hamburg, Aachen, Frankfurt und Heidelberg ein gemeinsamer Deep­Learning­
Algorithmus für verschiedene Datensätze entwickelt [142]. Die Arbeitsgruppe Physikalische Kosmo­
logie von Prof. Jochen Weller, hat langjährige Erfahrung in der Datenanalyse und Interpretation gro­
ßer astronomischer Beobachtungskampagnen wie z.B. für den Planck Satelliten der ESA, des Dark
Energy Survey (DES), oder Vorstudien für den Euclid Satelliten der ESA. Hierbei wurden auch KI­
Methoden zur Bestimmung photometrischer Rotverschiebungen entwickelt [175–178].

C. Gemeinsames

Über die Expertise der einzelnen Projektpartner hinaus gibt es eine Vielzahl an gemeinsam durch­
geführten Projekten im behandelten Themenbereich. Diese sind in Abbildung 2 dargestellt. Die um­
fassende gemeinsame Erfahrung an spezifischen Simulationstechniken, an der Entwicklung von ML
Anwendungen, und an erfolgreichen Vorprojekten motivieren die Struktur des Verbundes und garan­
tieren den Erfolg trotz der breiten interdisziplinären Aufstellung. Zukünftige Pläne für die Zusammen­
arbeit im Verbund werden im Arbeitsplan (Abschnitt III) sowie in Abschnitt VA vorgestellt.
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Abbildung 2: Überblick der bestehenden projektrelevanten Kollaborationen der Verbundpartner.

D. Abgrenzung

Die geplante Forschung ist zwar — unter anderem — motiviert durch konkrete Fragestellungen in
den am Verbund beteiligten ErUM­Forschungsfeldern, bietet aber eine bisher unerreichte Qualität
an Vernetzung. Einerseits wird enge Zusammenarbeit zwischen unterschiedlichen Fachdisziplinen
innerhalb von ErUM erreicht, andererseits werden grundlegende Fragestellungen gemeinsam mit
Informatik undMathematik behandelt. Damit grenzt sich der KISS­Verbund klar von denMöglichkeiten
in der Verbundforschung und Projekten innerhalb von ErUM­Pro ab.
Eine ähnliche Interdisziplinarität besteht zwar im PUNCH­Konsortium im Rahmen der Nationalen For­
schungsdateninfrastruktur (NFD), an dem auch einige an diesem Verbund beteiligte Forscher mit­
wirken. Jedoch wird das hier untersuchte Thema der effizienten Erzeugung von wissenschaftlichen
Daten im Rahmen von PUNCH nicht untersucht.
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Associated:
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Overview

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 16

Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Surrogates Sampling Quality

*apologies for 
selection bias!
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Generative Image Models

2024

Massive progress in the 
generation of artificial images




Generative Image Models

Massive progress in the 
generation of artificial images


Main driver: Normalising flows 
and diffusion


High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be

61

Idea:    
Use classical simulation to 

produce initial training data for 
generative model


Example: surrogate  
model for particle interaction 

in high granularity detector.




1. Use classical simulation 
or data as input 

Strategy
2. Train generative 

surrogate 
3. Oversample 

 Paganini, Oliveira, Nachman 1705.02355; Butter, Diefenbacher, GK, et al 2008.06545;

(slow)
 (fast)




Targets

Particle showers in calorimeters


Heavy ion collisions


Background hits in pixel sensors


Hard-scattering matrix elements


Distributions of galaxies




Targets Adressing more complex pion 
showers


Point-cloud 
diffusion model 
(CaloClouds) with 
very good 
generative fidelity


2 orders of magnitude 
speed-up on same hardware




Targets

Background hits in pixel sensors


Diffusion model simulates difficult 
background hits

Good agreement on charge, more 
tuning needed on correlations




Targets

Heavy ion collisions


Dedicated talk 
(Spoiler: substantial speed-up)




Targets

Distributions of galaxies


Learn parametrised surrogate 
of 3000 baryonic simulations,  
parametrised by 6 physics

quantities


Identify physics obs. 
in latent space




Targets

Hard-scattering matrix elements


Surrogate + Sampling 
to remove bias


Expect savings of O(50) 
Million CPU years!




Targets

Particle showers in calorimeters


Heavy ion collisions


Background hits in pixel sensors


Hard-scattering matrix elements


Distributions of galaxies


Across the board:Demonstrate saving 1-3 orders of 
magnitude in compute needs for simulation 
(On tasks that consume Millions of CPU years/year)


Required for next generation experiments and 
observatories
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Surrogates Sampling Quality



Smart background simulation

Transformer

Speed-up depends on 
physics selection: ~1 order 
of magnitude



Smart background simulation

Use normalising 
flows to predict 
sampling 
distributions at LO/
NLO

Again, 1-2 order of 
magnitude
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Foundational Topics

Which samples are 
drawn from the 

same underlying 
distribution?

Build automated 
tools for comparing 
and benchmarking 

distributions
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Foundational Topics

Paper & code now 
publically available!



1. Use classical simulation 
or data as input 

2. Train generative 
surrogate 

3. Oversample 

(slow)
 (fast)


Does this even make sense?
SciPost Physics Submission

Figure 5: Relative deviation of the training sample (left) and the GANned events (right) for
the 2D Gaussian ring. We show the same 7⇥ 7 2D-quantiles as in Fig. 4,

separately, remembering that the network is trained on Cartesian coordinates. In our setup
the GAN learns the peaked structure of the radius, with an amplification factor around four,
much better than the flat distribution in the angle, with an amplification factor below two.
Both of these amplification factors are computed for ten quantiles, to be compared with the
1D-result in Fig. 2. We can combine the two dimensions and define 7⇥ 7 quantiles, to ensure
that the expected number of points per quantile remains above one. The 2D amplification
factor then comes out slightly above three, marginally worse than the 50 1D-quantiles shown
in Fig. 2. One could speculate that for our simple GAN the amplification factor is fairly
independent of the dimensionality of the phase space.

We illustrate the 49 2D-quantiles in Fig. 5, where the color code indicates the relative
deviation from the expected, homogeneous number of 100/49 events per quantile. We see the
e↵ect of the GAN improvement with more subtle colors in the right panel. While it is hard
to see the quality of the GAN in radial direction, we observe a shortcoming in the azimuthal
angle direction, as expected from Fig. 4. We also observe the largest improvement from the
GAN in the densely populated regions (as opposed to the outside) which agrees with the
network learning to interpolate.

4 Multi-dimensional spherical shell

To see the e↵ect of a higher-dimensional phase space we further increase the number of
dimensions to five and change the Gaussian ring into a spherical shell with uniform angular
density and a Gaussian radial profile

P (r) = N4,1(r) +N�4,1(r)

(4)

with radius r � 0 and angles '1,..,4.

Even if we limit ourselves to the hard scattering, around ten phase space dimensions is
typical for LHC processes we would like to GAN [19]. In typical LHC applications, the number
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1. Use classical simulation 
or data as input 

2. Train generative 
surrogate 

3. Oversample 

(slow)
 (fast)

Does this even make sense?: Yes!

SciPost Physics Submission
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Figure 4: Differential distributions for the observables given in Eq.(2) from GEANT4
and from the VAE-GAN-generated images. Errors of the validation set (grey) and the
training set (orange) correspond to the Poisson-error per bin, while the uncertainty
on the VAE-GAN line (blue) is illustrated by the standard deviation of three indepen-
dent trainings on the 1k training data. All histograms are normalized, such that all
bins add up to one. The insets show the ratio to the high-statistics estimate of the
truth distribution.

and our VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of
distributions for 1k shower images used for a single VAE-GAN training and 1000k showers
from the corresponding generative network. They are compared to the validation set of 218k
GEANT4 showers. In addition to the continuous distributions we also show the number of
active pixels per image. First, we see that statistical fluctuations of the training set propagate
into under- and over-densities of the learned distributions. One prominent difference is the
number of active pixels, which can be attributed to the under-estimation of the number of low
energy hits below 5 MeV. The remaining learned distributions are smoother and show fewer
fluctuations than the training data. For the visible per-pixel energy, the VAE-GAN interpolates
into the sparsely populated interval between around 2 and 120 MeV even though the training
set does not include a single pixel in this range. Previous work has shown [30] how to correct
the low-energy behavior through an additional, consecutively trained post-processing network,
using an maximum mean discrepancy loss [18,57] on the pixel energy spectrum. Here we skip
this post-processing and instead focus on the statistical properties of the generated data for
visible pixel energies above 5 MeV.

Quantiles

We now turn to quantifying the efficacy of the VAE-GAN, given the strong performance shown
in Fig. 4. Like in Sec. 2, we could use standard histograms with bins of equal size. However,
in this case the occupation number of the bins strongly depend on the assumed support of the
distributions and on the binning. To avoid zero bins and sparse distributions we have to define
the ranges and binnings by hand, making this strategy inconsistent in evaluation. Instead,
we now split the support of the distributions into bins of equal probability weight, so-called
quantiles, forming the set Q. We generate the quantiles for a given distribution by iteratively
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quantile values

DJS(g, p) =
1
2

X

Qi2Q

Ç
gi log

gi
1
2(gi + pi)

+ pi log
pi

1
2(gi + pi)

å
. (5)

Just like the DJS, this estimate lies between zero and log 2. It turns into the continuous DJS
between the histogram estimators

g(x) =
X

Qi2Q

gi

vol(Qi)
1Qi
(x) =
X

Qi2Q

#{x 0 2Qi | x 0 2 G}
#G · vol(Qi)

1Qi
(x)

and p(x) =
X

Qi2Q

pi

vol(Qi)
1Qi
(x) ,

(6)

with vol the n-dimensional volume, 1Qi
the indicator function of the i-th quantile and G all

showers in either an evaluation set of GEANT4 samples or in the generated set. As for all
histogram estimators, independent of the choice of bin edges, the overall number of bins, the
cardinality of the fitted set, as well as the number of showers per bin have to go to infinity
for the estimator to converge to the underlying distribution. As DJS goes to zero, the two
distributions g and p are identical.

To determine the quality of our generative model relative to truth or validation distribu-
tions, we look at the dependence of the Jensen–Shannon divergence DJS on the number of
quantiles nquant we can reliably construct. This will allow us to gauge where the density es-
timation underlying the VAE-GAN beats the statistically limited training data. As discussed
earlier, we estimate the uncertainty on DJS for the 5k and 10k evaluation sets of GEANT4 data
from five independent sets each.

4 16 64 256 1k 4k 16k
nquant

10�1

10�2

10�3

10�4

10�5

1k 5k

10k 50k

1k�1000k

218k validation
showers

DJS

Evis

Geant4

VAE-GAN

Figure 6: Dependence of DJS on the number of quantiles nquant for different amounts
of GEANT4 data (orange) and VAE-GAN data (blue) for the observables given in
Eq.(2). Solid lines indicate meaningful, non-sparse quantile sets. The 1k GEANT4
samples were also used to train the VAE-GAN. Errors are calculated as the standard
deviation from five datasets. For 50k we omit the negligible errors.
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Scaling of 
difference to 
ground truth with 
resolution again 
better for the 
generative model.

Follow-up work 
witg statisticians
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New angles on fast calorimeter shower simulation https://inspirehep.net/literature/2647716
CaloClouds: fast geometry-independent highly-granular calorimeter 
simulation

https://inspirehep.net/literature/2657637
CaloClouds II: ultra-fast geometry-independent highly-granular calorimeter 
simulation

https://inspirehep.net/literature/2696622
EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion https://inspirehep.net/literature/2705220
Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and 
Trajectory Displacement Information

https://inspirehep.net/literature/2729197
Simulating images of radio galaxies with diffusion models https://ui.adsabs.harvard.edu/abs/2024arXiv241007794V/abstract
Deep-learning-based radiointerferometric imaging with GAN-aided training https://ui.adsabs.harvard.edu/abs/2023A%26A...677A.167G/abstract
Convolutional L2LFlows: generating accurate showers in highly granular 
calorimeters using convolutional normalizing flows

https://inspirehep.net/literature/2793021
Calibrating Bayesian Generative Machine Learning for Bayesiamplification https://inspirehep.net/literature/2814095
How to understand limitations of generative networks https://inspirehep.net/literature/2663017
Precision-Machine Learning for the Matrix Element Method https://inspirehep.net/literature/2709868
The MadNIS reloaded https://inspirehep.net/literature/2718812
Kicking it Off(-shell) with Direct Diffusion https://inspirehep.net/literature/2727894
Normalizing Flows for High-Dimensional Detector Simulations https://inspirehep.net/literature/2737698
The Landscape of Unfolding with Machine Learning https://inspirehep.net/literature/2781602
CaloDREAM -- Detector Response Emulation via Attentive flow Matching 
(A.2)

https://inspirehep.net/literature/2787493
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy 
Physics (C.2)

https://inspirehep.net/literature/2789600
Differentiable MadNIS-Lite https://inspirehep.net/literature/2814426
Machine learning study to identify collective flow in small and large colliding 
systems

https://inspirehep.net/literature/2660500
Building imaginary-time thermal field theory with artificial neural networks https://inspirehep.net/literature/2787839
Phase Transition Study Meets Machine Learning https://inspirehep.net/literature/2721834
Diffusion models as stochastic quantization in lattice field theory https://inspirehep.net/literature/2704849
Mass and tidal parameter extraction from gravitational waves of binary 
neutron stars mergers using deep learning

https://inspirehep.net/literature/2673529
Exploring QCD matter in extreme conditions with Machine Learning https://inspirehep.net/literature/2646083
Improved selective background Monte Carlo simulation at Belle II with graph 
attention networks and weighted events

https://inspirehep.net/literature/2676588
Ultra-high-granularity detector simulation with intra-event aware generative 
adversarial network and self-supervised relational reasoning

https://inspirehep.net/literature/2642136
Improved selective background Monte Carlo simulation at Belle II with graph 
attention networks and weighted events

https://indico.cern.ch/event/1253794/contributions/5588582/
QCD Equation of State of Dense Nuclear Matter from a Bayesian Analysis of 
Heavy-Ion Collision Data

https://inspirehep.net/literature/2512939
Efficient phase-space generation for hadron collider event simulation https://inspirehep.net/literature/2630465
A Portable Parton-Level Event Generator for the High-Luminosity LHC https://inspirehep.net/literature/2721108
Unweighting multijet event generation using factorisation-aware neural 
networks (A.1)

https://inspirehep.net/literature/2628385
Development of the time-of-flight particle identification for future Higgs 
factories (Bonus coll. work)

https://inspirehep.net/literature/2720464
Improving Monte Carlo simulations in high energy physics using machine 
learning techniques (A.1 and A.2)

https://inspirehep.net/literature/2698487
Event generation with Sherpa 3 https://inspirehep.net/literature/2843469
Learning Optimal and Interpretable Summary Statistics of Galaxy Catalogs 
with SBI

https://inspirehep.net/literature/2848384
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms https://arxiv.org/abs/2501.03138
Full phase space resonant anomaly detection https://arxiv.org/abs/2310.06897
Generative Diffusion Models for Lattice Field Theory https://arxiv.org/abs/2311.03578
Accurate Surrogate Amplitudes with Calibrated Uncertainties https://inspirehep.net/literature/2860406
Phase space sampling with Markov Chain Monte Carlo methods https://inspirehep.net/literature/2860425
Advancing Tools for Simulation-Based Inference https://inspirehep.net/literature/2838939

40+ KISS papers 
since 1.3.2023 

 
https://

kiss.pages.desy.de/
website/page/activities/
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Code & data for KISS projects 
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Closing
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Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Surrogates Sampling Quality

Major improvements 
(x10-x100) of 

efficiency for key 
simulation needs

Generally usable 
tools and 

foundational work 
with statistics

Substantial 
publications and 

public data & code


