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Motivation

Simulations relate fundamental physical structures to observable
quantities.

Complex chain
of simulations

Simulation-aided
Inverse problems




Motivation

Simulations relate fundamental physical structures to observable
quantities, but are computationally very expensive.
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Motivation

Simulations relate fundamental physical structures to observable
quantities, but are computationally very expensive.

They are crucially required for research in particle physics, hadron-
and nuclear physics, astro-particle physics, and astronomy.

Between particle
physics and
astronomy, KISS
covers 45 orders of

magnitudes.
ATLAS ... i
EXPERIMENT  201s-10-21 06:26:57 cesr
Experimental particle physics The observable
probes nature at length universe has a diameter

scales of 10-18 meters. of 1027 meters.



Motivation

Simulations relate fundamental physical structures to observable
quantities, but are computationally very expensive.

They are crucially required for research in particle physics, hadron-
and nuclear physics, astro-particle physics, and astronomy.

United by scientific
questions and
key methods

ATLAS ...

EXPERIMENT  2015-10-21 06:26:57 cesr
Experimental particle physics The observable
probes nature at length universe has a diameter

scales of 10-18 meters. of 1027 meters.



Motivation

Simulations relate fundamental physical structures to observable
quantities.

They are crucially required for research in particle physics, hadron-
and nuclear physics, astro-particle physics, and astronomy.

KISS develops and researches generative Al tools
to increase the efficiency of scientific simulations
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Overview
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Surrogates
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Generative Image Models

Massive progress in the
generation of artificial images



Generative Image Models

Massive progress in the
generation of artificial images

Main driver: Normalising flows
and diffusion

CaloCloud, time stamp: tgq

Idea: _ SIS R U U Py B _ Energy [MeV]

Use classical simulation to 14

produce initial training data for L 12
generative model - !

0.8

0.6

Example: surrogate N

model for particle interaction N

In high granularity detector. v a3



Strategy

1. Use classical simulation 2. Train generative 3. Oversample
surrogate

or data as input

GAN: Adversarial x'
training

VAE: maximize x Encoder\\ | z | @ x'
variational lower bound ‘I¢w | po(x|2)

Generator

G(2)

Flow-based models: x| Flow [ z | In:llerse x'
Invertible transform of f(x) | J = (2)
distributions

Diffusion models: X0
Gradually add Gaussian fo- - -~
noise and then reverse

Paganini, Oliveira, Nachman 1705.02355; Butter, Diefenbacher, GK, et al 2008.06545;
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Targets

Our training data

Photon showers in the ILC EM calorimeter

Photon

Energy: 90 [GeV]
Event: 4

Time step: 0.98246 [ns]

DESY.

hit ene—rgy [MeV]

Adressing more complex pion

showers

vy

hadronic showers are complex
difficult to model

naive binning with 3 x 3 bins per ECAL
cell results in more than 107 bins

represent as a point cloud

binning points to clusters
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Targets

Normalized PXD charge
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Diffusion model simulates difficult
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Two layers: inner & outer GOOd agreement on Chal’ge, more
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Background hits in pixel sensors



Targets

t= 50 t= 30

Reverse diffusion

Heavy ion collisions

HEIDi: Heavy-ion Events through
Intelligent Diffusion

Manjunath Omana Kuttan, Kai Zhou, Jan Steinheimer, Horst Stocker

FIAS Frankfurt Institute
for Advanced Studies <&

Dedicated talk
(Spoiler: substantial speed-up)




Dimension 2

Targets
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Targets

Machine Learning:
Design and train suitable surrogate models .

KISS Al: Can we replace MEs with ML-based surrogates?

T

Monte Carlo:

Develop unbiased algorithm to use surrogates.

—— target: flu) =u? —0.25
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— Monte Carlo unweighting in 2 stages: surrogate, real ME

Expect savings of O(50)
Million CPU years!

Surrogate + Sampling
to remove bias
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Process Events Summed Sampled Surrogates | Ratio
M| [MHS23*y| | [MHS23*y| || [MHS23*y|
Z + <0 jets 53 797 0.03 0.03 -
Z + <1 jets 164479 0.10 0.10 -
Z+ <2jets | 456960 0.29 0.30 -
Z+ <3 jets | 835797 0.58 0.74 -
Z+ <4 jets | 1164974 1.16 2.25 -
Z+ <5 jets | 1381719 8.93 18.08 3.10 2.8
Z + <6 jets | 1505067 161.32 51.68 7.57 6.7

Hard-scattering matrix elements



Targets

Across the board:Demonstrate saving 1-3 orders of
magnitude in compute needs for simulation
(On tasks that consume Millions of CPU years/year)

Required for next generation experiments and
observatories




Overview
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Smart background simulation

Particles

Generate

Discard

Class
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Block
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Particle Particle
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(b) Particle Attention Block (c) Class Attention Block

KISS annual meeting - 12.03.2025
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background simulation
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» significantly increased unw. eff. for all multiplicities

» factors up to 115

» seems to scale well

Again, 1-2 order of
magnitude

n



Surrogates
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Foundational Topics
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Which samples are
drawn from the
same underlying
distribution?

automated IID
sampling through
MCBench package
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custom implementation
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sampling framework

batches of IID
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CS8V file
with
n samples

single-sample
metrics
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metrics:
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Build automated

tools for comparing
and benchmarking
distributions
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Foundational Topics

Summary and Conclusions s -

Statistics > Computation

[Submitted on & Jan 2025

@) Deve I O ped a test sSu ite (i N the ju | ia MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms

Zeyu Ding, Comelius Grunwald, Katja Ickstadt, Kevin Kréninger, Salvatore La Cagnina

L
p r Og ra l l l I I I I n g | a n g u a ge In this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchmark suite enables

quantitative comparisons of samples by applying different metrics. including basic statistical metrics as well as more complex measures, in particular the
sliced Wasserstein distance and the maximum mean discrepancy We apply these mefrics to point clouds of bath independent and identically distributed
(ID) samples and correlated samples generated by MC techniques, such as Markov Chain Monte Carlo or Nested Sampling. Through repeated
M M comparisons, we evaluate test statistics of the metrics, allowing to evaluate the quality of the MC sampling algorithms.
. C O m p a re S a m p I e rS to I I D S a m p | e S u S I n g m et r l CS Our benchmark suite offers a variety of target functions with different complexities and dimensionalities, providing a versatile platform for testing the
capabilities of sampling algorithms. Implemented as a Julia package, MCBench enables users to easily select test cases and metrics from the provided

collections, which can be extended as needed. Users can run extemnal sampling algorithms of their choice on these test functions and input the resulting
samples to obtain detailed metrics that quantify the quality of their samples compared to the |ID samples generated by our package. This approach yields
. P rovi d e a Se | eCt i O n Of ( I | D S a m | e a b I e) test clear, quantitative measures of sampling quality and allows for informed decisions about the effectiveness of different sampling methods

p By offering such a standardized method for evaluating MC sampling quality, our benchmark suite provides researchers and practitioners from many

sclentific fields, such as the natural sciences, engineering, or the social sciences with a valuable tool for developing, validating and refining sampling

functions and (one and two-sample) metrics

(or arXiv-2501.03138v1 [stat.CO] for this version)

e Visit our suite on github and paper on arxiv

o https://github.com/tudo-physik-e4/MCBench
o  https://arxiv.org/abs/2501.03138

10.48550/arXiv.2501.03138 @

Next Steps:

e Add full test case support for different platforms
(R, stan, pymc) including testpoints —

MCBench - Monte Carlo Sampling Benchmark Suite

e Lookout to include more complex test cases and o
applications

Paper & code now
publically available!

25




1. Use classical simulation 2. Train generative 3. Oversample
or data as input surrogate

GAN: Adversarial < || x Discriminator ‘ | Generator| |
L. X
training D(x) G(z)
VAE: maximize x Encode | z | @ x'
variational lower bound ‘I¢w | po(x|2)

Flow-based models: x Flow | z | N x'

Invertible transform of f(x) | ! (2)

distributions

Diffusion models: X0
Gradually add Gaussian
noise and then reverse

(slow) N~ / (fast

Does this even make sense?

100 training points GANed sampled
6 3.0
4 I
2.0
2.
>0 1.0
-2
0.5
4 I
6 0.0




1. Use classical simulation 2. Train generative 3. Oversample
or data as input surrogate

GAN: Adversarial " ‘ | | Generator o
training G(z)

VAE: maximize x Encoder [Z] @ X/
variational lower bound q¢(z|x/)l |_| %

Flow-based models: X Flow | z | In:llerse x'
Invertible transform of f(x) =] J = (2)
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

»—v

(slow) \D / (fast)
oes this even make sense?: Yes!

. E - VlS .
ot 218k Geant4 1O_Jls_' Scaling of
0.15 1= 1k Geantd ¢ difference to
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0.05 7 : ok 9C resolution again
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o ] : :
21- N D18k validation, | 9ENErative model.

10 _ showers
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600 . 83\04 v 1000 1077 3 —— VAE-GAN Follow-up work
vis e T T T T T T T T T T T T T . . .
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New angles on fast calorimeter shower simulation

CaloClouds: fast geometry-independent highly-granular calorimeter
CaloClouds lI: ultra-fast geometry-independent highly-granular calorimeter
EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and
Simulating images of radio galaxies with diffusion models
Deep-learning-based radiointerferometric imaging with GAN-aided training
Convolutional L2LFlows: generating accurate showers in highly granular
Calibrating Bayesian Generative Machine Learning for Bayesiamplification
How to understand limitations of generative networks

Precision-Machine Learning for the Matrix Element Method

The MadNIS reloaded

Kicking it Off(-shell) with Direct Diffusion

Normalizing Flows for High-Dimensional Detector Simulations

The Landscape of Unfolding with Machine Learning

CaloDREAM -- Detector Response Emulation via Attentive flow Matching
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy
Differentiable MadNIS-Lite

Machine learning study to identify collective flow in small and large colliding
Building imaginary-time thermal field theory with artificial neural networks
Phase Transition Study Meets Machine Learning

Diffusion models as stochastic quantization in lattice field theory

Mass and tidal parameter extraction from gravitational waves of binary
Exploring QCD matter in extreme conditions with Machine Learning

Improved selective background Monte Carlo simulation at Belle 1l with graph

Ultra-high-granularity detector simulation with intra-event aware generative

Improved selective background Monte Carlo simulation at Belle |l with graph
QCD Equation of State of Dense Nuclear Matter from a Bayesian Analysis of

Efficient phase-space generation for hadron collider event simulation

A Portable Parton-Level Event Generator for the High-Luminosity LHC
Unweighting multijet event generation using factorisation-aware neural
Development of the time-of-flight particle identification for future Higgs
Improving Monte Carlo simulations in high energy physics using machine
Event generation with Sherpa 3

Learning Optimal and Interpretable Summary Statistics of Galaxy Catalogs
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms

Full phase space resonant anomaly detection

Generative Diffusion Models for Lattice Field Theory

Accurate Surrogate Amplitudes with Calibrated Uncertainties

Phase space sampling with Markov Chain Monte Carlo methods
Advancing Tools for Simulation-Based Inference
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https://inspirehep.net/literature/2705220
https://inspirehep.net/literature/2729197

https://ui.adsabs.harvard.edu/abs/2024arXiv241007794V/abstract
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40+ KISS papers
since 1.3.2023
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MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms

Zeyu Ding, Comelius Grunwald, Katja Ickstadt, Kevin Krdninger, Salvatore La Cagnina

In this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchi
quantitative comparisons of samples by applying different metrics, including basic statistical metrics as well as more complex mej
sliced Wasserstein distance and the maximum mean discrepancy We apply these metrics to point clouds of bath independent al
(1ID) samples and correlated samples generated by MC techniques, such as Markov Chain Monte Carlo or Nested Sampling. Th
comparisons, we evaluate test statistics of the metrics, allowing to evaluate the quality of the MC sampling algorithms.

Our benchmark suite offers a variety of target functions with different complexities and dimensionalities. providing a versatile pla
capabilities of sampling algorithms. Implemented as a Julia package, MCBench enables users to easily select test cases and mé]
collections, which can be extended as needed. Users can run extemal sampling algorithms of their choice on these test function:
samples to obtain detailed metrics that quantify the quality of their samples compared to the |ID samples generated by our packd
clear, quantitative measures of sampling quality and allows for informed decisions about the effectiveness of different sampling nf
By offering such a standardized method for evaluating MC sampling quality, our benchmark suite provides researchers and pracy
sclentific fields, such as the natural sciences, engineering, or the social sciences with a valuable tool for developing, validating ai

algorithms.
Subjects: C (stat.CO); Methodology (stat ME)
Citeas: arXiv2501.03 stat.CO)
(or arXiv-2501.03138v1 [stat.CO] fox this versi
https 1/10.48550/arXiv.2501.03138 i ]
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Fast Calorimeter Simulation Challenge 2022

View on GitHub

Welcome to the home of the first-ever Fast Calorimeter Simulation Challenge!

The purpose of this challenge is to spur the development and benchmarking of fast and high-fidelity
calorimeter shower generation using deep learning methods. Currently, generating calorimeter
showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a major computational
bottleneck at the LHC, and it is forecast to overwhelm the computing budget of the LHC experiments
in the near future. Therefore there is an urgent need to develop GEANT4 emulators that are both fast
(computationally lightweight) and accurate. The LHC collaborations have been developing fast
simulation methods for some time, and the hope of this challenge is to directly compare new deep
learning approaches on common benchmarks. It is expected that participants will make use of
cutting-edge techniques in generative modeling with deep learning, e.g. GANs, VAEs and normalizing

flows.

This challenge is modeled after two previous, highly successful data challenges in HEP - the top
tagging community challenge and the LHC Olympics 2020 anomaly detection challenge.

Datasets

The challenge offers three datasets, ranging in difficulty from “easy” to “medium” to “hard". The
difficulty is set by the dimensionality of the calorimeter showers (the number layers and the number
of voxels in each layer).

Each dataset has the same general format. The detector geometry consists of concentric cylinders

rete

Z

with particles propagating along the z-axis. The detector is segmented along the z-axis into d
layers. Each layer has bins along the radial direction and some of them have bins in the angle a. The
number of layers and the number of bins in r and a is stored in the binning .xml files and will be read
out by the HighLevelFeatures class of helper functions. The coordinates Ay and An correspond to the
x- and y axis of the cylindrical coordinates. The image below shows a 3d view of a geometry with 3

layers, with each layer having 3 bins in radial and 6 bins in angular direction. The right image shows

the front view of the geometry, as seen along the z axis.
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