

Laser pulse characterization and shaping

Denis Ilia

14/01/2025



HELMHOLTZ

## **Overview**

### Forward and inverse problem



# The laser system: NEPAL

## The laser system



# **Shaping experiments**

## The actuator

Waveshaper

- The waveshaper is a tunable optical filter which allows for spectral attenuation and phase control.
- The input light is spatially dispersed before hitting the liquid crystal matrix.
- By applying a voltage to the matrix elements, they can add individual phase shifts to the reflected signals.
- Control over time domain is governed by Fourier relationship.



## **Filter working principle**

Fourier shaping technique

Considering  $E_i(t)$  as the input waveform, we can describe the relation with the output  $E_o(t)$  by moving in the spectral domain.

Here, by means of Fourier transform, input and ouput are represented as  $A_i(f)$  and  $A_o(f)$  respectively, where the waveshaper applies a filter F(f) such that:

 $A_o(f) = F(f) A_i(f)$ 

Limits:

- Output spectral content is a subset of the input spectrum
- Resolution is limited by the Waveshaper transfer function
- Guaranteed dynamic range is 25 dB



## Some arbitrary shaping attempts

#### **Spectral domain**



## Some arbitrary shaping attempts

#### Time domain



### Flat-top electron bunch NEPAL X2





-20

-25

-15

-10

-5

0

5

10

15

20

25

# ML approach

#### **Data generation**

Data are generated through RPfiber simulations.

- Each simulation takes a filter setting as input and returns the complex spectrum.
- Filter settings are randomly generated by sampling in time domain different pulse shapes.
- Time domain phase is described as a 4<sup>th</sup> order polynomial, whose coefficient is uniformly sampled based on fwhm.

| Shape | Gaussian             |   |   |   |   |      | Parabolic            | Sech                 | Triangular           |   |   | Flat top             |
|-------|----------------------|---|---|---|---|------|----------------------|----------------------|----------------------|---|---|----------------------|
| Order | 1                    | 2 | 3 | 4 | 5 | 10   |                      |                      | 1                    | 2 | 4 |                      |
| FWHM  | Uniform: 2ps – 40 ps |   |   |   |   | ) ps | Uniform: 2ps – 40 ps | Uniform: 2ps – 40 ps | Uniform: 2ps – 40 ps |   |   | Uniform: 2ps – 40 ps |

**Over Christmas 110k data points have been generated!** 

### **Data manipulation**

- Both input and output data are converted to time domain by FFT
- And from complex 1D-array to real 2Darray (Real and Imaginary)



#### Architecture



#### Performance

- Model learns to predict filters for the given dataset
- However is not general enough and more diverse sampling is required.



## **Conclusions**

#### Summary

- Cross-correlator allows for better pulse intensity profile characterization
- First shaping attempts show that waveshaper is quite flexible and can deliver up to 21 ps flat-top UV pulses
- Flat-top profile has been transferred onto electron bunch
- ML architecture and data sampling is still in definition

### **Challenges and next steps**

- Working on data sampling
- Trying out different neural network architectures

# Thank you