QUANTUM ALGORITHMS FOR CHARGED PARTICLE TRACK RECONSTRUCTION IN THE **LUXE** EXPERIMENT

Arianna Crippa^{1,2}, Lena Funcke³, Tobias Hartung⁴, Beate Heinemann^{1,5}, Karl Jansen¹, Annabel Kropf^{1,5}, Stefan Kühn¹, Federico Meloni¹, David Spataro^{1,5}, Cenk Tüysüz^{1,2}, **Yee Chinn Yap**¹

¹Deutsches Elektronen-Synchrotron DESY ²Humboldt-Universität zu Berlin ³Rheinische Friedrich-Wilhelms-Universität Bonn ⁴Northeastern University London ⁵Albert-Ludwigs-Universität Freiburg

FH Scientific Computing Seminar, 31st January 2025

TRACKING BASICS

- Input: hits left in detector layers by particles.
- Pattern recognition/track finding: connect hits to form candidate tracks. Paths expected to be straight (in absence of magnetic field) or curved.
 - Global (considering all hits at once) vs local (seeded) approaches.
- Track fitting: mathematically optimise the track to determine properties, e.g. momentum, charge and origin.

TRACKING BASICS

- Input: hits left in detector layers by particles.
- Pattern recognition/track finding: connect hits to form candidate tracks. Paths expected to be straight (in absence of magnetic field) or curved.
 - Global (considering all hits at once) vs local (seeded) approaches.
- Track fitting: mathematically optimise the track to determine properties, e.g. momentum, charge and origin.

EXAMPLE CLASSICAL ALGORITHMS track parameters extrapolated from A to B • Kalman Filter (fitting to estimate track parameters, track fit incl Detector-Layer P accounting for uncertainties and material effects, measurement of B reconstructed track can also be used in track finding) Darameters on layer A Detector-Layer

• Combinatorial Kalman Filter (local, KF combined with track finding, able to reconstruct multiple tracks from a seed, suited for high occupancy environment)

• Hough transform (global, maps detector hits into a parameter space, where tracks manifest as clusters)

true track

isplace tracks PARTICLE TRACK RECONSTRUCTION secondary • Central in event reconstruction: Identify particles produced prompt tracks • Determine its momentum (with magnetic field) • Reconstruct primary/secondary vertices. • Distinguish genuine signals from background. Higher track multiplicities → increasing complexities.

WHY QUANTUM?

- CPU needs growing.
- Tracking is particularly CPU intensive due to its combinatorial complexity.

 Quantum computers have the potential to substantially speed up certain problems.

QC FOR HEP

- Quantum computing has been studied in various applications in theoretical and experimental HEP.
- Summary of the QC4HEP WG: <u>arXiv:2307.03236</u>

Yee Chinn Yap

LUXE: LASER UND XFEL EXPERIMENT

- LUXE is a proposed new experiment at DESY and European XFEL.
- Studies strong-field QED in collisions of XFEL electron beam and high-power laser.
- Two modes: directly collide electron beam or first convert electron beam into γ beam.
- 40 TW laser in phase-0, 350TW in phase-1.
- Website: <u>https://luxe.desy.de</u>, <u>CDR</u>, <u>TDR</u>

ELECTRON-LASER COLLISIONS

Yee Chinn Ya

Collision angle: 17.2°

ELECTRON-LASER COLLISIONS

Yee Chinn Ya

Yee Chinn Ya

Yee Chinn Ya

LUXE GOALS

- Main aim: precision measurements in a transition from perturbative to non-perturbative QED.
- Vary ξ between ~ 0.1 20 and conduct measurements:
 - e.g. # photons radiated, # positrons from non-linear Breit-Wheeler, etc.

Yee Chinn Yap

- For precise positron rate measurement, reconstruct particle path with tracking.

11

LUXE TRACKING CHALLENGE

- Tracking at LUXE becomes challeng multiplicities (up to 10⁶ at phase-0).
- At phase-0 (40 TW laser), **occupancies** at the pixel detector reach 100 particles/mm^{2.}
 - Orders of magnitudes higher than other planned HEP experiments, e.g. HL-LHC.
- Quantum computing may offer an advantage.
 ⁻⁶ ⁵⁰ 100 150 200 250 300 and the study
 ⁻⁶ ⁵⁰ 100 150 200 250 300 and the study
 ⁻⁶ ⁵⁰ 100 150 200 250 300 and the study
 ⁻⁶ ⁻⁶ ⁵⁰ 100 150 200 250 300 and the study

• Tracking at LUXE becomes challenging due to combinatorics at high track

TRACKING AT LUXE

Yee Chinn Yap

PTARMIGAN <u>arXiv:2108.10883</u>

Custom fast tracker simulation with simplified detector setup

Yee Chinn Yap

Yee Chinn Yap

Quantum/classical pattern recognition methods

Graph Neural Network

Quadratic Unconstrained Binary Optimisation

Combinatorial Kalman Filter

Yee Chinn Yap

Quadratic Unconstrained Binary Optimisation

Combinatorial Kalman Filter

Final track selection

QUANTUM GRAPH NEURAL NETWORK (GNN)

- Doublet classification.
- Graph constructed from doublets, where the hits are nodes and the connections between the hits are edges.
- Hybrid quantum-classical model with 10 hidden features (qubits).
- N_{I} (4=#tracker layers) iterations of alternating edge and node networks applied.
- Edge/doublet with scores above threshold are retained to form track candidates.

HEP.TrkX: <u>arXiv:1810.06111</u>, Exa.TrkX: <u>arXiv:2103.06995</u>, Q.TrkX: <u>arXiv:2109.12636</u>

15

QUBO

- Triplet classification.
 - given by the states of T_i , T_i .
- The QUBO can be mapped to an Ising Hamiltonian.

Weighting triplet T_i with quality a_i

 Minimising the QUBO is equivalent to finding the ground state of the Hamiltonian.

Quadratic Unconstrained **Binary Optimisation**

• Find the best set of triplets which can form tracks by minimising the QUBO,

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i} b_{ij} T_i T_j, \quad T_i, T_j \in \{0\}$$

Compatibility b_{ii} between two triplets

$$b_{ij} = \begin{cases} -S(Ti, Tj), & \text{if } (T_i, T_j) \text{ form a quadrup} \\ \zeta & \text{if } (T_i, T_j) \text{ are in conflict}, \\ 0 & \text{otherwise.} \end{cases}$$

Find T_i, T_i that minimises QUBO!

QUBO MINIMISATION USING VQE

- hybrid quantum-classical algorithm.
 - Nakanishi-Fujii-Todo (NFT) optimiser.
 - QUBO is partitioned into sub-QUBOs of the size of the quantum device (7 qubits assumed) to be solved iteratively.
- Exact solution using matrix diagonalisation used as benchmark.

• The ground state is found using Variational Quantum Eigensolver (VQE), a

Yee Chinn Yap

QUANTUM ANNEALING

- Besides VQE, quantum annealing can also be used.
- Quantum annealers specialise in solving combinatorial optimisation problems.
- Advantage: > 5000 qubits in <u>D-Wave</u>.
 - Study impact of QUBO partitioning.

• Simulated (thermal) annealing as benchmark.

COMBINATORIAL KALMAN FILTER (CKF)

- As classical benchmark, CKF in a common tracking software (ACTS) used.
 - State-of-the-art experiment-independent toolkit for tracking, providing modular and efficient algorithms.
- Triplets from first three layers are used as **seeds**.
- Starting from each seed, the CKF extrapolates the particle's trajectory to the next detector layers.
 - Track parameters predicted and updated layer by layer.

FINAL TRACK SELECTION

- Tracks are required to have 4 hits, found either directly with classical CKF GNN/QUBO approaches.
- Tracks are fitted and **ambiguity solving** applied to remove worse quality tracks with shared hits from the track collection.
 - No track is allowed to have more than 1 shared hit.
 - Local and combinatorial nature of CKF mean duplicates and hit sharing could be more common than global tracking approaches.

tracking or by combining selected doublets/triplets into quadruplets in the

COMPARISON

- Compare performance of these tracking methods for $\xi = 3 7$ in LUXE and 67,000.
- Two metrics:

Yee Chinn Yap

phase-0 e-laser interactions, where the number of positrons are between 140

*A track is considered matched if the majority of its hits belong to the same particle (i.e. at least 3 out of 4 hits).

RESULTS (SIMULATED)

RESULTS

PERFORMANCE VS ENERGY

GNN results not available

QUBO SIZE STUDY WITH SIMULATED ANNEALING

• No partitioning of QUBO.

ξ

RESULTS (QUANTUM HARDWARE)

TEST ON IBM QUANTUM COMPUTER

- Results shown so far obtained using without noise.
- To study how well VQE works, we study an example with 7 triplets (matching the #qubits of the device tested).
- Compare results from running on quantum hardware (IBM Nairobi) to ideal simulation as well as a simulated device with noise.

• Results shown so far obtained using classical simulations of quantum hardware

Real D-wave annealer at Forschungszentrum Jülich QUBO examples with sizes (a) qubits 10 | best sol -4.23 | samples:4 4000 g_3000 g_

- 10 136.
- Ground state found for smaller QUBO sizes.

SUMMARY AND OUTLOOK

- arXiv:2304.01690.
 - Quantum approach with a GNN or QUBO (VQE or annealing).
 - Achieved similar performance as classical tracking (CKF).
 - Tests on real hardware.
- Outlook: how to extend our tracking approach to 4D?
 - O(10ps) timing resolution achievable in future tracking detector.

• Demonstrated the feasibility of tracking at LUXE using a quantum approach in

Constrain time-of-flight compatibility and reduce hit combinations.

4D TRACKING DETECTORS

- Many experimental upgrades/proposals include such technology in all tracking layers, e.g. LHC Run 5.
- Huge beam-induced background at muon colliders.
 - Timing information essential to filter out these background.
- Timing resolution of 30ps (vertex detector) 60ps.

Yee Chinn Yap

MUON COLLIDERS

- With muon collider as a test case, develop 4D tracking by adding timing information to the QUBO.
- background at a 10 TeV muon collider.

• QUBO parameters: 1D (timing only), 3D (spatial) and 4D (spatial+timing).

Massive long-lived charged particle signal overlaid with the beam-induced

LLCP						
	Fake	e rate	[%]			
	1D	3D	4D			
	0.0	0.0	0.0			

CONCLUSIONS

- extended to 4-dimension for muon colliders.
- Quantum hardware and algorithms are advancing rapidly, bringing practical HEP applications closer to reality.

De	vel	0	D	n
			~	

S	Y	S	Т	Е	М	S	;	

PHYSICAL QUBITS:	
PHYSICAL 2-QUBIT GATE ERROR:	
LOGICAL QUBITS:	
L O G I C A L E R R O R R A T E S :	

© 2024 Quantinuum. All Rights Reserved.

• Feasibility of tracking using quantum approach demonstrated for LUXE, and

nent roadmap

2020 2023 2025 2027 2029 QUANTINUUM H1 H2 HELIOS APOLLO 56 192 20 96 1000's 1 × 10⁻³ 1 × 10⁻³ < 2 × 10⁻⁴ < 5 × 10⁻⁴ 1 × 10⁻⁴ 10+~ 50 ~ 100 100's 1 × 10⁻⁵ to 1 × 10^{-10*}

> *analysis based on recent literature in new, novel error correcting codes predict that error could be as low as 1E-10 in Apollo (ref: arXiv:2403.16054, arXiv:2308.07915)

THANK YOU

On target

3 💌	2024	2025	2026	2027	2028	2029	20
juantum peed by antum and nodes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyon quant super- will in of logi unloch power comp
	Platform						
	Code 🥹 assistant	Functions	Mapping collections	Specific libraries			Gener QC lib
re							
\$	Transpiler 👌 service	Resource management	Circuit knitting x p	Intelligent orchestration			Circui librari
0	Heron 🕲	Flamingo	Flamingo	Flamingo	Flamingo	Starling	Blu

0	Heron 🕑 (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue (1B)
0	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error correction	Error o
	5k gates 133 qubits	5k gates 156 qubits	7.5k gates 156 qubits	10k gates 156 qubits	15k gates 156 qubits	100M gates 200 qubits	1B gat 2000 (
	Classical modular	Quantum modular	Quantum modular	Quantum modular	Quantum modular	Error corrected	Error o
	Up to 133x3 = 399 qubits	Up to 156x7 = 1092 qubits	modularity	modul			
						A STA	11.

nd 2033, tum-centric rcomputers clude 1000's gical qubits king the full r of quantum uting

ral purpose oraries

LUXE PARAMETER SPACE

Yee Chinn Yap

- SLAC Experiment 144 in the 90s
 - reached $\chi_e \leq 0.25$, $\xi < 0.4$, within perturbative regime, but with observable non-linear effects.
 - observed $e^- + n\gamma_L \rightarrow e^- e^+ e^$ trident process.
 - Other ongoing/proposed experiments: SLAC-E320 (US), Astra-Gemini (UK), ELI-NP (RO)

LASER

- Titanium:Sapphire laser based on chirped pulse amplification (CPA) technology. Laser photon wavelength 800 nm (or 1.55 eV).
- Different ξ values can be reached by focussing/defocussing the laser.
- Need exceptional shot-to-shot stability (1%).

Laser powe Peak intens Dimension Quantum p aser focal Laser pulse

	Phase-0	Phase-1	
er (TW)	40	350	
sity in focus (x10 ²⁰ W/cm ²)	<1.33	<12	
less peak intensity ξ	<7.9	<23.6	
barameter χ_e for $E_e = 16.5$ GeV	<1.5	<4.45	
spot waist (µm)	≥3		
e duration (fs)	30		

EXPERIMENTAL SETUP

- Use of dipole magnet to separate particles.
- Large variation in particle fluxes.

Positron energy [GeV]

Yee Chinn Yap

TRACK POST PROCESSING

GNN

• Circuit 10 with two layers and 10 qubits used.

(d) Circuit 10 in four qubits and single layer configuration. Adapted from Sim et al. (2019).

parameters.

EdgeNet and the NodeNet are applied alternately four times to allow the node features to be updated using farther nodes, as determined in a scan of the optimal model

GNN

Fig. 6 The Hybrid Neural Network (HNN) architecture. The input is first fed into a classical fully connected Neural Network (FC NN) layer with sigmoid activation. Then, its output is encoded in the QNN with the Information Encoding Circuit (IEC). Next, the Parametrized Quantum Circuit (PQC) applies transformations on the encoded states. The output of QNN is obtained as expectation values for each qubit that is measured. A final FC NN layer with sigmoid activation is used to combine the results of different qubit measurements. The same HNN architecture is used in Edge (upper input and output dimension) and Node Networks (lower input and output dimension) with different parameters. The input and output dimension sizes change according to the network type. Details of the dimensions of each layer are given in Table 1.

Yee Chinn Yap

GNN

- 90 BXs for training and 10 BXs for inference.

classical GNN with the same architecture, but with 128 node hidden features

Image from http://openqemist.1qbit.com/docs/vqe_microsoft_qsharp.html

Yee Chinn Yap

45

METHOD COMPARISON

Methods	GNN	QUBO	CKF
Starting point	Doublet	Triplet	Seed
Local/global	Global	Global	Local
Scope	Pattern recognition on	ly Pattern recognition only	Pattern recognition + track fitting
Classical benchmark	Classical GNN	Matrix diagonalisation	

