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Motivation

• The holographic principle states that in quantum gravity the information stored
in a (d+1) dimensional volume is encoded on its d dimensional boundary [’t Hooft ’93,

Susskind ’95]

• Motivated from Bekenstein-Hawking entropy of black holes

SBH =
A

4GN
,

which indicates that the number of degrees of freedom in QG scales with the area
and not the volume [Bekenstein ’73, Hawking ’75]

• Strong evidence for statistical interpretation of black hole entropy, from explicit
microstate counting [Strominger, Vafa ’96, Balasubramanian et al. ’22]
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Motivation

• The most successful realisation of
the holographic principle is the
AdS/CFT correspondence
[Maldacena ’97]

• The correspondence provides a map
between bulk an boundary Hilbert
spaces

V : HBulk → HBdry

• The holographic map V has several
inconsistencies in the semiclassical
GN → 0 limit

AdS2+1

ϕ
tr
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Motivation

Problem 1
• The bulk Hilbert space is much larger than the boundary Hilbert space

[Engelhardt et al. ’22, Faulkner, Li ’22]

⇒ The holographic map V becomes non-isometric
⇒ HBulk contains large set of null states, which get annihilated by V
⇒ This can not be detected by a local low energy observer, having only access to

simple measurements [Engelhardt et al. ’22]

• The size of the bulk Hilbert space violates central dogma of black hole physics
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Motivation

Problem 2: The factorisation puzzle

• The eternal black hole is dual to two
copies of the CFT in an entangled state
[Maldacena ’01]

• In this setup

HBdry = HL ⊗HR ,

while Hbulk does not factorize

• Algebraic perspective: The boundary
algebra of observables is type I while the
bulk operator algebra is type III1
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Black Hole Microstates

Consider infinite family of generalized TFD states [Papadodimas, Raju ’15, Papadodimas, Raju ’16]

|TFD⟩α =
1√
Z(β)

∑
n

eiαn e−
β
2
En |En⟩L ⊗ |En⟩R

with phases αn. The TFD corresponds to αn = 0

• Same one-sided correlation functions as TFD
• Entanglement equivalent of TFD

SEE(ρR) = SEE(ρ
α
R) with ρ

(α)
R = TrL |TFD⟩(α)⟨TFD|(α)

• According to ER=EPR [Maldacena, Susskind ’13, Verlinde H. ’20]

SEE(ρR) = SBH
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Black Hole Microstates

Each |TFD⟩α corresponds to time-evolved TFD

|TFD⟩α = ei
t
2
(HL+HR)|TFD⟩ with αn = En t

Holographic dual to Eternal black hole in AdS, with different gluing to boundary time

• Time-shift δ is equivalent to length of Lorentzian wormhole, and can only be detected by
non-local measurement

• Existence of these states corresponds to freedom of choosing an origin of time
independently for CFTL/R
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Black Hole Microstates

In semiclassical, or large N limit the energy spectrum is highly random (approx. continuous)
[Verlinde H. ’20]

⇒ ⟨TFDα|TFD⟩γ =
1

Z(β)

∑
n

e−β En ei(γn−αn) = δαγ +O(e−SBH/2)

This may also be calculated from the gravitational path integral
⇒ includes a sum over geometries consistent with given boundary condition

⇒ Due to orthogonality states form infinite basis of bulk Hilbert space ⇒ Problem 1
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Black Hole Microstates

Problem is solved by calculating overlaps in microstates from higher moments

1

N
∑
γ

|⟨TFDα|TFD⟩γ |2 =
1

N
+

1

Z2(β)

∑
n

e−2β En =
1

N
+

Z(2β)

Z2(β)

Correction term understood from appearance of replica wormholes in gravitational
path integral [Verlinde H. ’20, Verlinde H. ’21]

⇒ non-perturbative and non-local correction
Jonathan Karl | Non-Locality induces Isometry and Factorisation in Holography 10/22



Black Hole Microstates

Appearance of non-trivial overlaps in higher moments understood from an averaging procedure

⟨TFDα|TFD⟩γ = Mαγ with Mαγ = δαγ + e−SBH/2 Rαγ

and Rαγ is random matrix with mean zero ⇒ Higher moments contain variance of R

• Degrees of freedom of fundamental theory encoded in R

• Path integral averages over fundamental DoF [Penington, Shenker, Stanford, Yang ’19]

• Here this is a state average over Hilbert space of phase-shifted states

The Euclidean replica wormholes arise from an average over states corresponding to
Lorentzian wormholes of different length.
This connects two seemingly different notions of non-locality in QG
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Counting the Microstates

Counting only linearly independent microstates: Strategy [Balasubramanian et al. ’22, Emparan et al. ’24]

• Consider Hilbert space HΩ spanned by Ω microstates

• Calculate dΩ = dim(HΩ) ⇒ Dimension of full HS given by limit of dΩ

• dΩ given by rank of Gram matrix Gij := ⟨TFDαi
|TFD⟩αj

i, j = 1, ...,Ω

dΩ = lim
ϵ→0+

∫ ∞

ϵ

dλD(λ) = Ω− Ker(G) with D(λ) := Tr (δ(λ1−G)) =

Ω∑
i=1

δ(λ− λi)

• Higher powers Gn encode overlaps ⇒ resolvent method [Penington, Shenker, Stanford, Yang ’19]

• Eigenvalue density D(λ) given in terms of trace of resolvent

D(λ) =
1

2πi
lim
ϵ→0

(R(λ− iϵ)−R(λ+ iϵ))
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Counting the Microstates

Resolvent is defined as Rij(λ) =
(

1
λ1−G

)
ij
=

δij
λ +

∞∑
n=1

(Gn)ij
λn+1 or pictorially:

=⇒ Rij(λ) =
δij
λ

+
1

λ

∞∑
n=1

Zn

Zn
1

Rn−1(λ)Rij(λ) with R(λ) =
∑
i

Rii(λ)
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Counting the Microstates

Properly normalized n-boundary wormhole partition function given by [Verlinde H. ’21]

Zn

Zn
1

=
Z(nβ)

Zn(β)
with Z(β) = e−βM+SBH =

∫ ∞

0

dE e−βE z(E)

with microcanonical partition function z(E)
⇒ Project into a fixed energy window + introduce microcanonical wormhole partition function
[Balasubramanian et al. ’22]

Zn = e−nβ Ez(E)∆E , eSM = z(E)∆E = eSBH

Inserting this into the previous result for R(λ) gives

R(λ) =
Ω

λ
+

eSM

λ

∞∑
n=1

(
R(λ)

eSM

)n

=
Ω

λ
+

1

λ

eSMR(λ)

eSM −R(λ)
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Counting the Microstates

R(λ) is solution to quadratic equation and we find the EV density of G

D(λ) =
eSBH

2πλ

√[
λ−

(
1− (Ω e−SBH)1/2

)2
] [(

1 + (Ω e−SBH)1/2
)2

− λ

]
+ δ(λ)

(
Ω− eSBH

)
Θ
(
Ω− eSBH

)
From this we find

dΩ = min
(
Ω, eSBH

)
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Counting the Microstates

• Microstates span HS of dimension eSBH ⇒ span full HBH

• Embedding of (infinite) Heff into HBH explicitly realises non-isometric map
[Engelhardt et al. ’22, Faulkner, Li ’22]

• Null states correspond to kernel of G

• Existence of these states can only be noticed once Ω = eSBH states are included in HΩ

⇒ In particular requires non-local measurement

• For our calculation we don’t have to add any external DoF, but only rely on the
fundamental non-locality of quantum gravity
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Algebraic Perspective on Factorisation

• In AQFT a physical system is defined in terms of its algebra of observables AoO
A

• Given a faithful algebraic state ω : A → C we construct the GNS representation
(HGNS, π)

HGNS := { |a⟩ , a ∈ A | ⟨a|b⟩ := ω(a∗b) } , π(a)|b⟩ = |ab⟩ ,

⇒ π(A) is a von Neumann algebra
• Theorem: ω is pure if and only if the GNS representation is irreducible
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Algebraic Perspective on Factorisation

Type pure states/ irreps Trace/ density matrices Entropies
I ∃ ⇒ irrep. ∃ < ∞
II no irrep. ⇒ ∄ ∃ (renormalized) ∞
III no irrep. ⇒ ∄ ∄ ∞

• The algebra of observables associated to a local subregion U of a QFT is type III1
⇒ This is one manifestation of the information paradox

• Solving this paradox requires a description of the AoO exterior to a black hole as an
algebra of type I, which is the operator algebra of ordinary quantum mechanical systems
[Witten ’21]

• Conjecture: The type I description requires non-perturbative corrections [Witten ’21]
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Algebraic Perspective on Factorisation

• Boundary perspective: AoO of the left/right CFT is of type I B(HL/R), and the TFD
is an element of HL ⊗HR ⇒ relies on discrete energy spectrum

• Bulk perspective: For GN → 0 the bulk algebra is type III1
⇐⇒ At large N continuous energy spectrum [Lashkari et al. ’23]

• TFD only exists as element, associated to 1 of GNS Hilbert space HGNS, constructed
from algebra of single-trace operators AL/R, with

ω(a) = ⟨a⟩β = lim
N→∞

⟨TFD|a|TFD⟩

and π(AL/R) is type III1 [Leutheusser, Liu ’21]

• Continuous energy spectrum ⇒ ⟨TFDα|TFD⟩γ = δαγ
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Algebraic Perspective on Factorisation

• HL is not a single trace-operator
⇒ |TFD⟩α /∈ HGNS
⇒ Each microstate contained in
separate Hα

GNS

• Include HL into AoO through crossed
product construction [Witten ’21,

Chandrasekaran, Penington, Witten ’22]

ÂL = AL ⋊AHL

which acts on

Heff = HGNS ⊗ L2(R)

and is of type II∞
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Algebraic Perspective on Factorisation

• In the type II description all microstates are orthogonal, and the entropy is infinite

• We showed explicitly that the inclusion of non-perturbative wormhole corrections imply:
⇒ microstates span finite dimensional Hilbert space ⇒ Type I

• Claim: The non-perturbative corrections yield a discrete energy spectrum (⇒ type I)
proof : Let us assume that the spectrum is continuous
⇒ Microstates are orthogonal ⇒ Hilbert space is infinite dimensional
 wormholes imply non-trivial overlaps ⇒ Hilbert space finite dimensional
⇒ Spectrum is discrete

• Consequently all microstates can be written as an element of a factorized Hilbert space

Hl ⊗Hr = span( |En⟩l ⊗ |Em⟩r )
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Conclusion

The holographic map seems to be inconsistent in the semiclassical limit
Problem 1: Bulk Hilbert space has way too many states

• Infinite family of generalized TFD states are orthogonal for GN → 0

• Including non-local effects in the gravitational path integral leads to non-trivial overlaps
⇒ linearly independent states span a HS consistent with holographic entropy bounds

Problem 2: Factorisation puzzle (type I vs type III/II)

• Reduction in size corresponds to a transition from type III/II to type I
⇒ Confirms Witten’s conjecture regarding non-perturbative corrections

• Transition is understood in terms of a discrete energy spectrum
⇒ Energy eigenstates span factorized Hilbert space

A consistent formulation of a quantum theory of gravity has to be non-local
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