

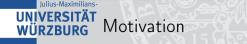
Non-Locality induces Isometry and Factorisation in Holography DIP online Seminar

based on arxiv:2411.09616 Souvik Banerjee, Johanna Erdmenger, <u>Jonathan Karl</u>

22.01.2025

Jonathan Karl | Non-Locality induces Isometry and Factorisation in Holography

- Motivation
- Black hole microstates
- Counting the microstates
- The factorisation puzzle from an algebraic perspective
- Conclusion



- The holographic principle states that in quantum gravity the information stored in a (d+1) dimensional volume is encoded on its d dimensional boundary ['t Hooft '93, Susskind '95]
- Motivated from Bekenstein-Hawking entropy of black holes

$$S_{\mathsf{BH}} = \frac{A}{4G_N} \,,$$

which indicates that the number of degrees of freedom in QG scales with the area and not the volume $[{\tt Bekenstein}\ '73,\ {\tt Hawking}\ '75]$

• Strong evidence for statistical interpretation of black hole entropy, from explicit microstate counting [Strominger, Vafa '96, Balasubramanian et al. '22]

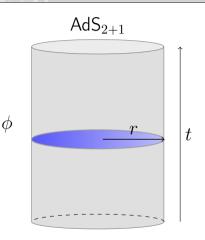
• The most successful realisation of the holographic principle is the AdS/CFT correspondence

[Maldacena '97]

• The correspondence provides a map between bulk an boundary Hilbert spaces

 $V: \mathcal{H}_{\mathsf{Bulk}} \to \mathcal{H}_{\mathsf{Bdry}}$

• The holographic map V has several inconsistencies in the semiclassical $G_N \to 0$ limit



Problem 1

• The bulk Hilbert space is much larger than the boundary Hilbert space

[Engelhardt et al. '22, Faulkner, Li '22]

- \Rightarrow The holographic map V becomes non-isometric
- $\Rightarrow \mathcal{H}_{\mathsf{Bulk}}$ contains large set of null states, which get annihilated by V
- ⇒ This can not be detected by a local low energy observer, having only access to simple measurements [Engelhardt et al. '22]
- The size of the bulk Hilbert space violates central dogma of black hole physics

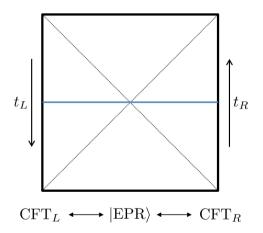
Problem 2: The factorisation puzzle

- The eternal black hole is dual to two copies of the CFT in an entangled state [Maldacena '01]
- In this setup

 $\mathcal{H}_{\mathsf{Bdry}} = \mathcal{H}_L \otimes \mathcal{H}_R \,,$

while $\mathcal{H}_{\mathsf{bulk}}$ does not factorize

• Algebraic perspective: The boundary algebra of observables is type I while the bulk operator algebra is type III₁



Consider infinite family of generalized TFD states [Papadodimas, Raju '15, Papadodimas, Raju '16]

$$|\mathsf{TFD}\rangle_{\alpha} = \frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{i\alpha_{n}} e^{-\frac{\beta}{2}E_{n}} |E_{n}\rangle_{L} \otimes |E_{n}\rangle_{R}$$

with phases α_n . The TFD corresponds to $\alpha_n = 0$

- Same one-sided correlation functions as TFD
- Entanglement equivalent of TFD

$$S_{\mathsf{EE}}(\rho_R) = S_{\mathsf{EE}}(\rho_R^{\alpha}) \quad \text{with} \quad \rho_R^{(\alpha)} = \mathsf{Tr}_L \, |\mathsf{TFD}\rangle_{(\alpha)} \langle \mathsf{TFD}|_{(\alpha)}$$

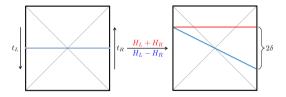
• According to ER=EPR [Maldacena, Susskind '13, Verlinde H. '20]

$$S_{\mathsf{EE}}(\rho_R) = S_{\mathsf{BH}}$$

Each $|{\rm TFD}\rangle_{\alpha}$ corresponds to time-evolved TFD

$$|\mathsf{TFD}
angle_{lpha} = e^{irac{t}{2}(H_L + H_R)} |\mathsf{TFD}
angle \quad \text{with} \quad lpha_n = E_n \, t$$

Holographic dual to Eternal black hole in AdS, with different gluing to boundary time



- Time-shift δ is equivalent to length of Lorentzian wormhole, and can only be detected by non-local measurement
- Existence of these states corresponds to freedom of choosing an origin of time independently for ${\rm CFT}_{L/R}$

In semiclassical, or large N limit the energy spectrum is highly random (approx. continuous) [Verlinde H. '20]

$$\Rightarrow \quad \langle \mathsf{TFD}_{\alpha} | \mathsf{TFD}_{\gamma} = \frac{1}{Z(\beta)} \sum_{n} e^{-\beta E_{n}} e^{i(\gamma_{n} - \alpha_{n})} = \delta_{\alpha\gamma} + \mathcal{O}(e^{-S_{\mathsf{BH}}/2})$$

This may also be calculated from the **gravitational path integral** \Rightarrow includes a **sum over geometries** consistent with given boundary condition

$$\langle \mathrm{TFD} |_{\alpha} \stackrel{\frown}{=} \begin{array}{c} \alpha \\ \mathbf{L} \\ \mathbf{R} \\ ? \\ |\mathrm{TFD} \rangle_{\gamma} \stackrel{\frown}{=} \end{array} \begin{array}{c} \gamma \\ \mathbf{R} \\ \gamma \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{TFD} \\ \mathbf{R} \\ \mathbf{$$

 \Rightarrow Due to orthogonality states form infinite basis of bulk Hilbert space \Rightarrow **Problem 1**

 ${\sf Jonathan \ Karl \mid Non-Locality \ induces \ Isometry \ and \ \ Factorisation \ in \ Holography}$

Problem is solved by calculating overlaps in microstates from higher moments

$$\frac{1}{\mathcal{N}}\sum_{\gamma} |\langle \mathsf{TFD}_{\alpha} | \mathsf{TFD}_{\gamma} |^2 = \frac{1}{\mathcal{N}} + \frac{1}{Z^2(\beta)}\sum_n e^{-2\beta E_n} = \frac{1}{\mathcal{N}} + \frac{Z(2\beta)}{Z^2(\beta)}$$

Correction term understood from appearance of replica wormholes in gravitational path integral [Verlinde H. '20, Verlinde H. '21]

\Rightarrow non-perturbative and non-local correction

Jonathan Karl | Non-Locality induces Isometry and Factorisation in Holography



Appearance of non-trivial overlaps in higher moments understood from an averaging procedure

$$\langle \mathsf{TFD}_{lpha} | \mathsf{TFD}
angle_{\gamma} = \overline{\mathcal{M}_{lpha\gamma}} \quad \text{with} \quad \mathcal{M}_{lpha\gamma} = \delta_{lpha\gamma} + e^{-S_{\mathsf{BH}}/2} \, \mathcal{R}_{lpha\gamma}$$

and $\mathcal{R}_{\alpha\gamma}$ is random matrix with mean zero \Rightarrow Higher moments contain variance of \mathcal{R}

- Degrees of freedom of fundamental theory encoded in $\ensuremath{\mathcal{R}}$
- Path integral averages over fundamental DoF [Penington, Shenker, Stanford, Yang '19]
- Here this is a state average over Hilbert space of phase-shifted states

The Euclidean replica wormholes arise from an average over states corresponding to Lorentzian wormholes of different length.

This connects two seemingly different notions of non-locality in QG

Counting only linearly independent microstates: Strategy [Balasubramanian et al. '22, Emparan et al. '24]

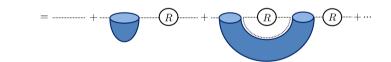
- Consider Hilbert space \mathcal{H}_Ω spanned by Ω microstates
- Calculate $d_{\Omega} = \dim(\mathcal{H}_{\Omega}) \Rightarrow$ Dimension of full HS given by limit of d_{Ω}
- d_Ω given by rank of Gram matrix $G_{ij}:=\langle \mathsf{TFD}_{\alpha_i}|\mathsf{TFD}\rangle_{\alpha_j}$ $i,j=1,...,\Omega$

$$d_{\Omega} = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{\infty} d\lambda \, D(\lambda) = \Omega - \operatorname{Ker}(G) \quad \text{with} \quad D(\lambda) := \operatorname{Tr}\left(\delta(\lambda \mathbbm{1} - G)\right) = \sum_{i=1}^{\Omega} \, \delta(\lambda - \lambda_i)$$

- Higher powers G^n encode overlaps \Rightarrow resolvent method [Penington, Shenker, Stanford, Yang '19]
- Eigenvalue density $D(\lambda)$ given in terms of trace of resolvent

$$D(\lambda) = \frac{1}{2\pi i} \lim_{\epsilon \to 0} \left(R(\lambda - i\epsilon) - R(\lambda + i\epsilon) \right)$$

Resolvent is defined as $R_{ij}(\lambda) = \left(\frac{1}{\lambda \mathbb{I} - G}\right)_{ij} = \frac{\delta_{ij}}{\lambda} + \sum_{n=1}^{\infty} \frac{(G^n)_{ij}}{\lambda^{n+1}}$ or pictorially:



$$\implies R_{ij}(\lambda) = \frac{\delta_{ij}}{\lambda} + \frac{1}{\lambda} \sum_{n=1}^{\infty} \frac{Z_n}{Z_1^n} R^{n-1}(\lambda) R_{ij}(\lambda) \quad \text{with} \quad R(\lambda) = \sum_i R_{ii}(\lambda)$$

Jonathan Karl | Non-Locality induces Isometry and Factorisation in Holography

Properly normalized n-boundary wormhole partition function given by [Verlinde H. '21]

$$\frac{Z_n}{Z_1^n} = \frac{Z(n\beta)}{Z^n(\beta)} \quad \text{with} \quad Z(\beta) = e^{-\beta \, M + S_{\text{BH}}} = \int_0^\infty dE \, e^{-\beta E} \, z(E)$$

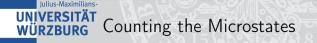
with microcanonical partition function z(E)

 \Rightarrow Project into a fixed energy window + introduce microcanonical wormhole partition function [Balasubramanian et al. '22]

$$\mathbf{Z}_n = e^{-n\beta E} z(E) \Delta E \,, \quad e^{S_M} = z(E) \Delta E = e^{S_{\mathsf{BH}}}$$

Inserting this into the previous result for $R(\lambda)$ gives

$$R(\lambda) = \frac{\Omega}{\lambda} + \frac{e^{S_M}}{\lambda} \sum_{n=1}^{\infty} \left(\frac{R(\lambda)}{e^{S_M}}\right)^n = \frac{\Omega}{\lambda} + \frac{1}{\lambda} \frac{e^{S_M} R(\lambda)}{e^{S_M} - R(\lambda)}$$



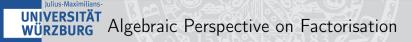
 $R(\lambda)$ is solution to quadratic equation and we find the EV density of G

$$\begin{split} D(\lambda) &= \frac{e^{S_{\mathsf{BH}}}}{2\pi\lambda} \sqrt{\left[\lambda - \left(1 - \left(\Omega \, e^{-S_{\mathsf{BH}}}\right)^{1/2}\right)^2\right] \left[\left(1 + \left(\Omega \, e^{-S_{\mathsf{BH}}}\right)^{1/2}\right)^2 - \lambda\right]} \\ &+ \delta(\lambda) \left(\Omega - e^{S_{\mathsf{BH}}}\right) \Theta \left(\Omega - e^{S_{\mathsf{BH}}}\right) \end{split}$$

From this we find

$$d_{\Omega} = \min\left(\Omega, e^{S_{\mathsf{BH}}}\right)$$

- Microstates span HS of dimension $e^{S_{\rm BH}} \Rightarrow$ span full ${\cal H}_{\rm BH}$
- Embedding of (infinite) \mathcal{H}_{eff} into \mathcal{H}_{BH} explicitly realises non-isometric map [Engelhardt et al. '22, Faulkner, Li '22]
- Null states correspond to kernel of ${\cal G}$
- Existence of these states can only be noticed once $\Omega = e^{S_{BH}}$ states are included in \mathcal{H}_{Ω} \Rightarrow In particular requires **non-local** measurement
- For our calculation we don't have to add any external DoF, but only rely on the **fundamental non-locality of quantum gravity**



- In AQFT a physical system is defined in terms of its algebra of observables AoO ${\cal A}$
- Given a faithful algebraic state $\omega:\mathcal{A}\to\mathbb{C}$ we construct the GNS representation $(\mathcal{H}_{\mathsf{GNS}},\pi)$

$$\mathcal{H}_{\mathsf{GNS}} := \left\{ \left. |a\rangle \,, a \in \mathcal{A} \left| \left< a | b \right> := \omega(a^*b) \right. \right\}, \quad \pi(a) | b \rangle = |ab\rangle \,,$$

 $\Rightarrow \pi(\mathcal{A})$ is a von Neumann algebra

• Theorem: ω is pure if and only if the GNS representation is irreducible

Julius-Maximilians-

Туре	pure states/ irreps	Trace/ density matrices	Entropies
	$\exists \Rightarrow irrep.$	Э	$<\infty$
	no irrep. $\Rightarrow \nexists$	∃ (renormalized)	∞
	no irrep. $\Rightarrow \nexists$	∄	∞

- The algebra of observables associated to a local subregion U of a QFT is type III₁ \Rightarrow This is one manifestation of the information paradox
- Solving this paradox requires a description of the AoO exterior to a black hole as an algebra of type I, which is the operator algebra of ordinary quantum mechanical systems [Witten '21]
- Conjecture: The type I description requires non-perturbative corrections [Witten '21]

- Boundary perspective: AoO of the left/right CFT is of type I $\mathcal{B}(\mathcal{H}_{L/R})$, and the TFD is an element of $\mathcal{H}_L \otimes \mathcal{H}_R \Rightarrow$ relies on discrete energy spectrum
- Bulk perspective: For G_N → 0 the bulk algebra is type III₁
 ⇔ At large N continuous energy spectrum [Lashkari et al. '23]
- TFD only exists as element, associated to 1 of GNS Hilbert space \mathcal{H}_{GNS} , constructed from algebra of single-trace operators $\mathcal{A}_{L/R}$, with

$$\omega(a) = \langle a \rangle_{\beta} = \lim_{N \to \infty} \langle \mathsf{TFD} | a | \mathsf{TFD} \rangle$$

and $\pi(\mathcal{A}_{L/R})$ is type III_1 [Leutheusser, Liu '21]

• Continuous energy spectrum $\Rightarrow \langle \mathsf{TFD}_{\alpha} | \mathsf{TFD}_{\gamma} = \delta_{\alpha\gamma}$

- *H_L* is not a single trace-operator
 ⇒ |TFD⟩_α ∉ *H*_{GNS}
 ⇒ Each microstate contained in separate *H*^α_{GNS}
- Include H_L into AoO through crossed product construction [Witten '21,

Chandrasekaran, Penington, Witten '22]

$$\hat{\mathcal{A}}_L = \mathcal{A}_L \rtimes \mathcal{A}_{H_L}$$

which acts on

Iulius-Maximilians-

$$\mathcal{H}_{\mathsf{eff}} = \mathcal{H}_{\mathsf{GNS}} \otimes L^2(\mathbb{R})$$

 $\mathcal{H}_{\mathrm{BH}}$ H_L $\mathcal{H}^{lpha}_{\mathrm{GNS}}$ $\mathcal{H}_{\mathrm{GNS}}$ H_L $/H_L$ $\mathcal{H}^{\gamma}_{\mathrm{GNS}}$

and is of type II_∞

Julius-Maximilians-

- In the type II description all microstates are orthogonal, and the entropy is infinite
- We showed explicitly that the inclusion of **non-perturbative** wormhole corrections imply: \Rightarrow microstates span finite dimensional Hilbert space \Rightarrow Type I
- Claim: The non-perturbative corrections yield a discrete energy spectrum (⇒ type I) proof: Let us assume that the spectrum is continuous
 ⇒ Microstates are orthogonal ⇒ Hilbert space is infinite dimensional
 ¼ wormholes imply non-trivial overlaps ⇒ Hilbert space finite dimensional
 ⇒ Spectrum is discrete
- Consequently all microstates can be written as an element of a factorized Hilbert space

$$\mathcal{H}_l \otimes \mathcal{H}_r = \operatorname{span}(|E_n\rangle_l \otimes |E_m\rangle_r)$$

The holographic map seems to be inconsistent in the semiclassical limit **Problem 1:** Bulk Hilbert space has way too many states

- Infinite family of generalized TFD states are orthogonal for $G_N \rightarrow 0$
- Including non-local effects in the gravitational path integral leads to non-trivial overlaps
 ⇒ linearly independent states span a HS consistent with holographic entropy bounds

Problem 2: Factorisation puzzle (type I vs type III/II)

- Reduction in size corresponds to a transition from type III/II to type I
 ⇒ Confirms Witten's conjecture regarding non-perturbative corrections
- Transition is understood in terms of a discrete energy spectrum
 - \Rightarrow Energy eigenstates span **factorized Hilbert space**

A consistent formulation of a quantum theory of gravity has to be non-local