B study in the CMS experiment -intermediate report-

Stefania Vitillo Supervisor: Wolfgang Lohmann Tutor: Igor Marfin

Università di Pisa

22nd August 2011

The Physics

Process under study

 At LHC, Higgs bosons can be produced in association with b quarks

- Of all SM processes, multijet production is the major source of background (bg).
- Accurately identified b-jets will help to reduce bk from hadronization of light quarks and gluons.

Why investigating in this particular decay channel?

 High branching ratio for lower Higgs masses

Exercises with MC samples

ullet Pythia generation of Z o bar b

- ullet Pythia generation of par p o tar t
- ullet Selection of $W o \mu
 u_{\mu}$

Measuring B-tag efficiency

- Construction of b enriched MC samples:
 - $t\bar{t} \to \mu + \text{jets}$
 - $t\bar{t} \to (\text{Non } \mu + \text{jets})$
 - QCDMuEnriched
 - $W \to \mu\nu_{\mu} + \text{jets}$
 - $W \to \tau \nu_{\tau} + \text{jets}$
 - Zbb
 - Wbb (Not yet available in the Summer11 samples)
 - $Z \rightarrow \mu\mu + \mathrm{jets}$
- MC luminosity $L = \frac{N}{\sigma \cdot f_{eff}}$ ($f_{eff} = \text{filter efficiency}$)

Next

To do:

 Isolating jet samples enriched in b-jet using a likelihood ratio:

$$L = \prod_{i} \frac{f_i(x_i)}{1 - f_i(x_i)}$$

where x_i is a kinematical variable (ex.MET etc.)

Efficiency calculation

$$\varepsilon_b = \frac{x_{tag} - \varepsilon_0 (1 - x_b)}{x_b}$$

- $x_b^{(MC)} = \frac{b_{jets}}{all_{jets}}$, $x_{tag}^{(Data)} = \frac{tag_{jets}}{all_{jets}}$
- \bullet $\varepsilon_0 =$ mistag rate estimation