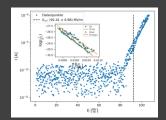
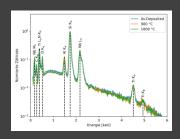
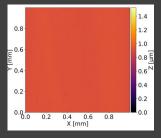


Update NOVALIS

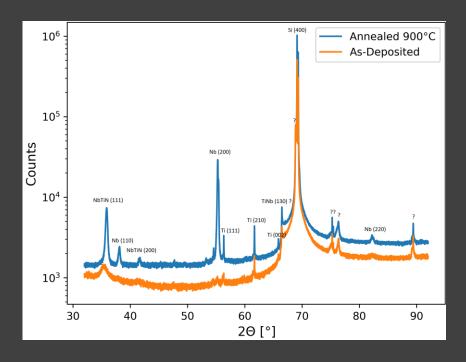
Frederic Braun
fbraun@uni-wuppertal.de
Dirk Lützenkirchen-Hecht
dirklh@uni-wuppertal.de

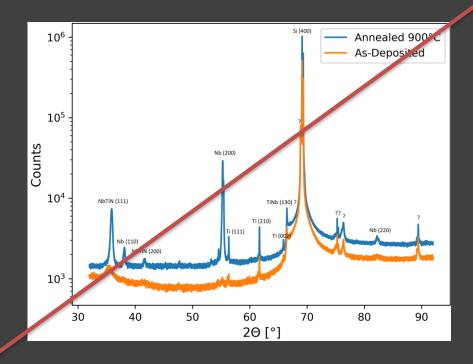



NbTiN Samples

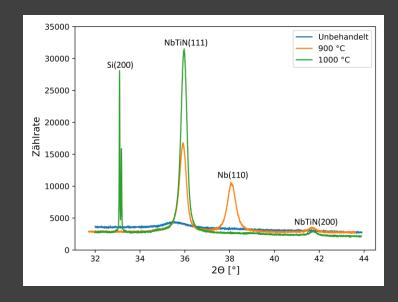

- Samples system
 - Si(100)-Wafer
 - 15 nm AlN
 - 60 nm Nb_{0.75}Ti_{0.25}N
- Three samples
 - As-Deposited
 - Annealed at 900 °C (1 h)
 - Annealed at 1000 °C (1 h)

Analysing with

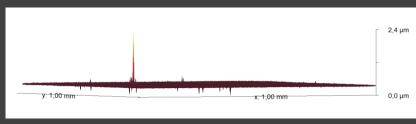

- FESM
- XRD
- EDX
- SEM
- OP



Results of XRD Measurement

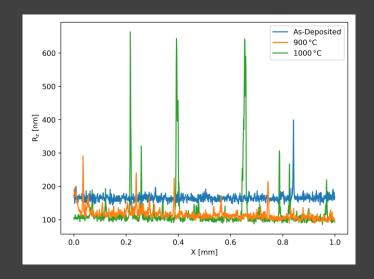


Results of XRD Measurement



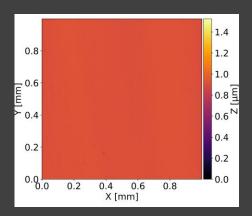
Results of XRD Measurement

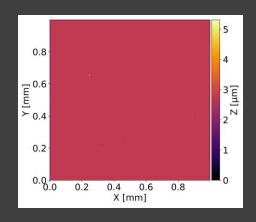
- Only NbTiN and Si Peaks visible
 - Nb(110) belongs to sample holder
- As-Deposited NbTiN under heavy microstrain
 - high fwhm and bragg angle is lower
- Bragg-angle of NbTiN(111) increases
 - As-Deposited: 35.565 ± 0.013 °
 - 900 °C: 35.916 ± 0.001 °
 - 1000 °C: 35.960 + 0.001 °
- Grainsize of NbTiN(111) increases
 - As-Deposited: $75.297 \pm 3.480 \, \text{Å}$
 - 900 °C: 272.182 ± 1.532 Å
 - 1000 °C: 319.084 + 1.631 Å
- → Annealing releases stress in the film
- NbTiN(200) is formed by annealing



Results for the surface roughness




1000 °C


- A few deeper defects on the surface
- 3D-view shows distinction between defect types
 - Annealing promotes formation of defects
 - Wafer defects become visible
- Determination of R_z over a few subareas

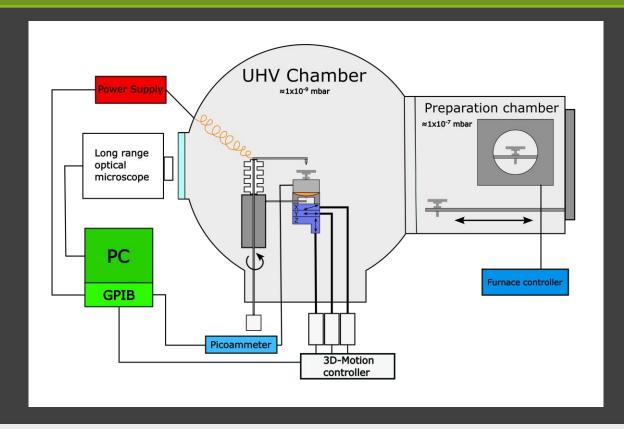
Results for the surface roughness

As-Deposited

- $R_a = (24.11 \pm 0.76) \text{ nm}$
- $R_Z = (141.67 \pm 3.06) \text{ nm}$ over $10 \times 10 \text{ mm}^2$

Annealed at 900 °C

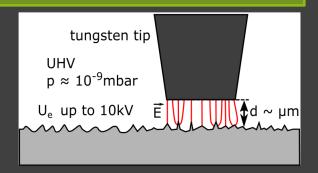
- $R_a = (15.93 \pm 0.33) \text{ nm}$
- $R_Z = (94.59 \pm 2.00) \text{ nm}$ over $10 \times 10 \text{ mm}^2$

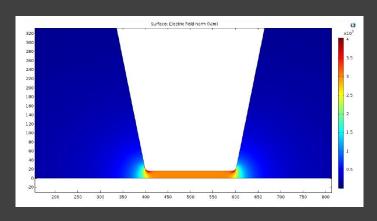

Annealed at 1000 °C

- $R_a = (14.15 \pm 0.82) \text{ nm}$
- $R_Z = (80.34 \pm 0.13) \text{ nm}$ over 10 x 10 mm²

 \rightarrow Annealing reduces R_a by 41.30 % and R_z by 43.29 %

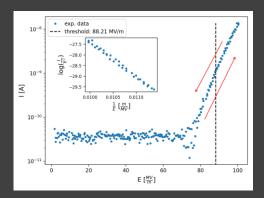
Experimental Setup

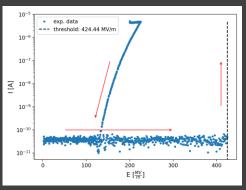


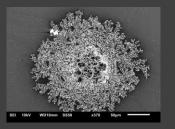

Working principle

Current flows after Fowler-Nordheim:

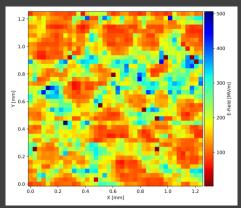
$$I(E) = \frac{AS\beta^{2}E^{2}}{\Phi} \exp\left(-\frac{B\Phi^{\frac{3}{2}}}{\beta E}\right)$$

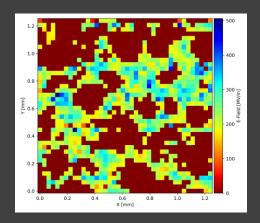

With A = $1.54 \cdot 10^6 \frac{\text{AeV}}{(\text{MV})^2}$, B = $6830 \frac{eV^{\frac{3}{2}}MV}{m}$, Φ as work function, β as geometric factor of the tip/surface and S as effective area of emittance

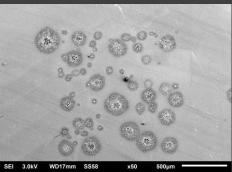



- Surface roughness leads to enhanced field emisson → lowers onset-field
- Tip radius and shape can vary heavily
 - Between a few nm and 1 mm
 - Sharper tips yield higher resolution
 - Truncated cone tips are more mechanical stable

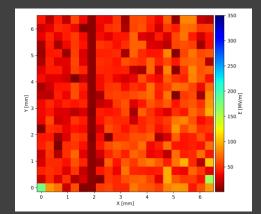
Current-Voltage-Curves (IV-Kurven)

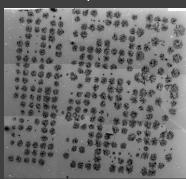

- Increasing voltage until selected current, then decreasing voltage
- Onset-field threshold set to 1 nA
- Plotting and fitting $Log\left(\frac{I}{E^2}\right)$ vs. $\frac{1}{E}$ yields β , S and Φ
- On some measurements sudden jump to high currents
 - called activation of surface
 - activation irreversibly changes surface
- Onset-field threshold set at the highest field strength


Measurement programm for the FESM


- Measuring I-V-Curves over 6.5x6.5 mm²
 - 440I-V-Curves in total
 - Max. current 10 nA
- Stepsize 317.65 μm
 - No overlap with 250 μm tip
- Evaluation of I-V-Curves with
 - Constant Current Map
 - Determination of E_{on}
 - β ,φ und S

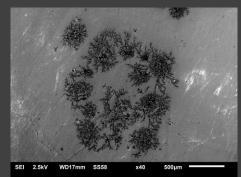
Constant Current Map – filtering of damaged areas

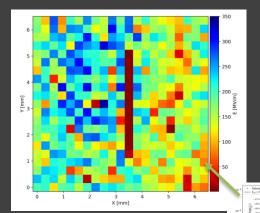

Damage threshold: 140 $\frac{MV}{m}$

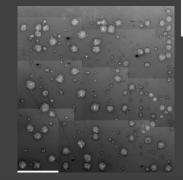


- Damages has to be filtered out
- → Setting individual threshold for each map

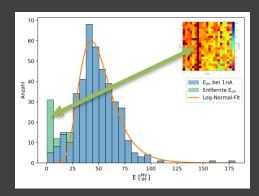
Results of Constant Current Map



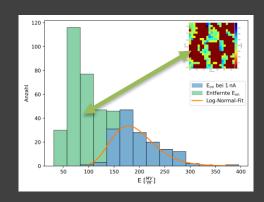

As - Deposited


1.2 - 300 1.0 - 250 0.8 - 150 0.0 - 100 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2

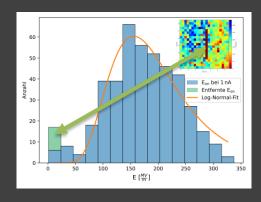
900 °C



1000 °C



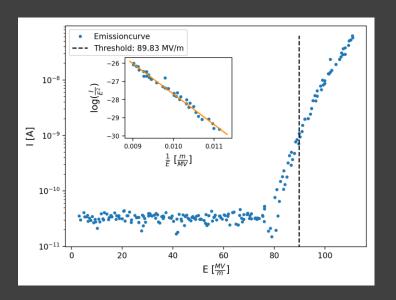
Results Constant Current Map


As - Deposited

$$\bar{E}_{on}$$
: 51.53 \pm 1.03 $\frac{MV}{m}$

900 °C

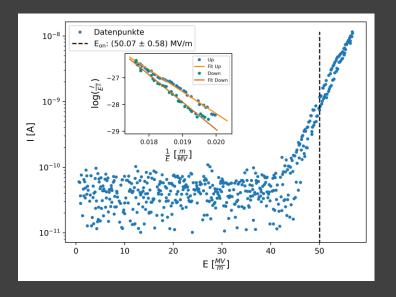
$$\bar{E}_{on}$$
: 192.37 \pm 2.87 $\frac{MV}{m}$

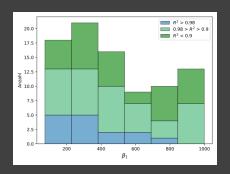


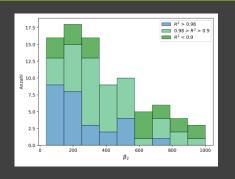
1000 °C

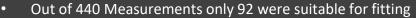
$$\bar{E}_{on}$$
: 195.71 \pm 6.43 $\frac{\text{MV}}{\text{m}}$

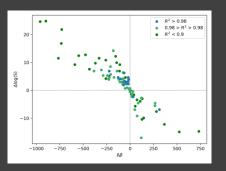
Analysis of I-V-Curves

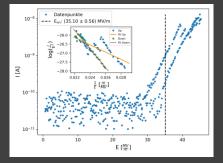

- Determination of β , φ and S separate over Up and Down direction
 - Altering the surface through FE
 - \rightarrow β and S change
- Fits are done with varying β and keeping S and φ fix for several values of S and φ
 - Setting damage threshold
 - Work function between 2.5 eV and 5.5 eV
 - Stepsize 0.05 eV
 - S between 10^{-23} m² and 10^{-8} m²
 - Stepsize $0.1 \cdot 10^x$
 - Damaged areas will not be taken into account

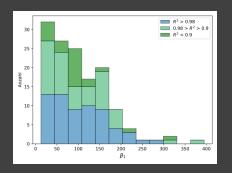

Analysis of I-V-Curves

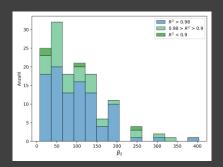

- Determination of β , φ and S separate over Up and Down direction
 - Altering the surface through FE
 - \rightarrow β and S change
- Fits are done with varying β and keeping S and φ fix for several values of S and φ
 - · Setting damage threshold
 - Work function between 2.5 eV and 5.5 eV
 - Stepsize 0.05 eV
 - S between 10^{-23} m² and 10^{-8} m²
 - Stepsize $0.1 \cdot 10^x$
 - Damaged areas will not be taken into account

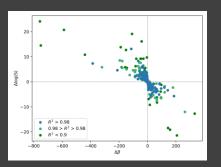


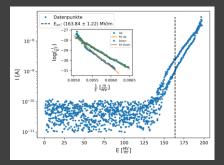

Results of the geometric factor – As - Deposited

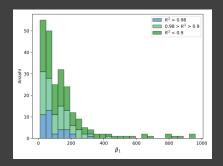


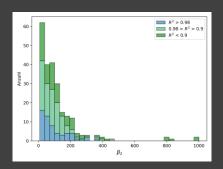


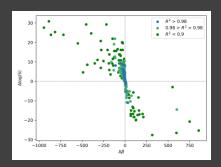

- Data from activation of the surface is not suitable for fitting
- Quality of fits increases for β_2
- Comparison between eta_1 and eta_2
 - In 61 cases $\beta_1 > \beta_2$
 - In 26 cases $\beta_1 < \beta_2$
 - In 5 cases no change
 - → Microtips are destroyed
- Problem: damaged surface \rightarrow bigger β_1
 - Film destruction during Up-Direction at currents as low as I ≈ 1 nA
- Negative correlation between log(S) and β_1



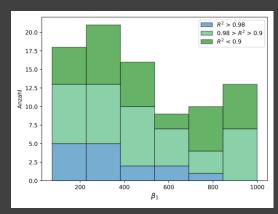

Results of the geometric factor— 900 °C Probe

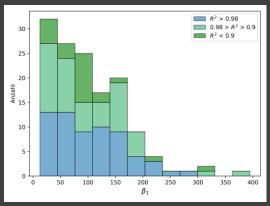


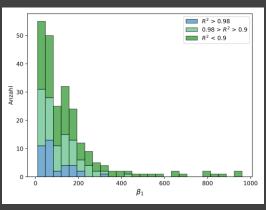

- Lots of damaged areas reduces data suitable for fitting
- Quality of fits increases for β_2
- No real changes between eta_1 and eta_2
- Negative correlation between log(S) and β_1



Results of the geometric factor – 1000 °C Probe

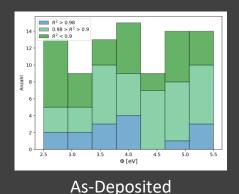


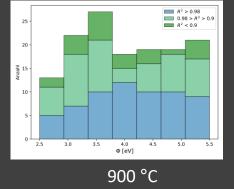


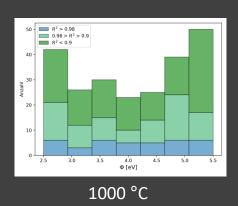

- Out of 440 Measurements 235 were suitable for fitting
 - Noticeable less surface damage
- Comparison between β_1 and β_2
 - In 111 cases $\beta_1 > \beta_2$
 - In 44 cases $\beta_1 < \beta_2$
 - In 80 cases no change
 - → Microtips are destroyed
- Negative correlation between log(S) and $\,eta_1$

Results of the geometric factor – comparison

Annealed samples show lower β_1 -values \rightarrow Reduces surface roughness / less surface damage




As-Deposited


900 °C

1000 °C

Results for the work function

Damage threshold is taken into account

- No clear conclusion about the work function can be drawn
 - Damage can influence the results for the work function
- UPS / Kelvin probe measurements will be done to determine Φ

Conclusion

- Annealing NbTiN sample has lots of advantages for FE
 - Increasing grainsize of NbTiN
 - from ≈ 75 Å to ≈ 320 Å
 - Releasing stress in the film
 - Reducing R_z by 43.29 %
 - Less/smaller microtips lowers β
 - · Increasing onset-field significantly

• from
$$\approx 50 \frac{MV}{m}$$
 to $\approx 200 \frac{MV}{m}$

- Improved film adhesion due to reduced stress
 - Significantly reduced surface destruction after FE

Thank you for your Attention

