Massive Particle Production to NNLO in QCD

Grigorios Chachamis University of Wuerzburg

in collaboration with M. Czakon and D. Eiras LL 2008, Sondershausen, 22 April 2008

Outline

- Focus on hadronic W pair production: Virtual two-loop and one-loop squared amplitudes
- \bullet Motivation for studying q q \rightarrow W W accurately
- Results: NNLO Virtual Corrections
- Outlook \rightarrow Transition to Top Pair Production
- Power corrections
- Full mass dependence
- Outlook (... Time-reversed)

The process

Motivation I

W pair production important as a **signal** in searches for New Physics. Testing ground for non-abelian structure of SM, triple gauge couplings, yWW, ZWW

$$\sigma(p\bar{p} \rightarrow W^+W^-) =$$

 $14.6^{+5.8}_{-5.1}$ (stat) $^{+1.8}_{-3.0}$ (syst) ± 0.9 (lum) pb

$$13.8^{+4.3}_{-3.8}$$
(stat) $^{+1.2}_{-0.9}$ (syst) ± 0.9 (lum) pb

$\sqrt{s} = 2 \text{ TeV}$	W^+W^-		I	$\sqrt{s} = 14 \text{ TeV}$	W^+W^-	
$(p\bar{p})$	MRS98	CTEQ5		(pp)	MRS98	CTEQ5
Born [pb]	10.0	10.3		Born [pb]	81.8	86.7
Full [pb]	13.0	13.5		Full [pb]	120.6	127.8
Tevatron Campbell, Ellis ('99) LHC						

Motivation II

The 'elusive' Higgs boson Higgs:

- Only constituent of the SM not experimentally observed yet.
- Electroweak symmetry breaking
- Description of particle masses

Discovery by itself is not enough! Properties of the Higgs needed to exclude or verify alternative models

Motivation II

Soon in the LHC era

VIP: Higgs! LHC has the energy and luminosity required to discover the Higgs in all the allowed range, $114 < M_{_{\rm H}} < 600$ GeV

Hambye, Riesselmann ('97)

LEP EW working Group

Motivation II

LHC Higgs production ...

Gluon Fusion channel is the dominant production mechanism up to $\rm M_{_H}$ ~ 1 TeV : $g~g \rightarrow H$

Sub-dominant production process is Vector Boson Fusion: $q \; q \to V \; V \; \to q \; q \; H$

Spira '97 Spira '97 gluon fusion (GF)

vector boson fusion (VBF)

Motivation II

Once the Higgs is produced it will eventually decay into different particles depending on its mass. In the Higgs mass range 140 - 180 GeV the main decay mode is into W pairs

Motivation II

Going after the Higgs: Main discovery Channels

 $M_{H}: 114 - 140 \text{ GeV}$ $H \rightarrow \gamma \gamma$

 $M_{\rm H} : 180 - 600 \text{ GeV}$ $H \to Z Z \to 4 l$

 $M_{H}: 140 - 180 \text{ GeV}$ $H \rightarrow W W \rightarrow 2 l + \text{missing Energy } E_{T}$

Pick up the signal process
Avoid or suppress the usually large <u>background</u>
Accurate theoretical predictions for both signal and background

Main background (irreducible): W pair production

All these are nice but ...

Do we really need to go up to NNLO?

State of the art:

W Pair Production All these are nice but ...

So ??? Do we really need to go up to NNLO?

The answer is YES!

W Pair Production Signal/background

Signal known to NNLO

QCD corrections to :

 $gg \rightarrow H$ NLO: Contribute ~ 70% Dawson ('91); Djouadi, Graudenz, Spira, Zerwas ('95) NNLO: Contribute an additional 20% for LHC Harlander, Kilgore ('02); Anastasiou, Melnikov ('02) Ravindran, Smith, van Neerven ('03) With a Jet veto at NNLO: corrections ~ 85% Catani, de Florian, Grazzini ('02) Davatz, Dissertori, Dittmar, Grazzini, Pauss ('04) Anastasiou, Melnikov, Petrielo ('04) $H \rightarrow W W \rightarrow l v l v$ NNLO Anastasiou, Dissertori, Stöckli, Webber ('08) Grazinni ('08)

Background

• <u>qq</u>→WW

Background

• <u>qq</u>→WW

70% enhancement at NLO. With a jet veto the enhancements fall to 20-30%

Dixon, Kunszt, Signer ('98, '99)

Background

• <u>qq</u>→WW

70% enhancement at NLO. With a jet veto the enhancements fall to 20-30%

Dixon, Kunszt, Signer ('98, '99)

loop induced gg→WW_

Background

• <u>qq</u>→WW

70% enhancement at NLO. With a jet veto the enhancements fall to 20-30%

Dixon, Kunszt, Signer ('98, '99)

• <u>loop induced gg</u> \rightarrow WW Contributes to the quark annihilation channel at $\mathcal{O}(\alpha_s^2)$. Enhanced by the **large gluon flux.** After Higgs search cuts it increases the background by 30%, with no cuts by 5%

Glover, van der Bij ('89); Kao, Dicus ('91) Binoth, Ciccolini, Kauer, Krämer ('05) Duhrssen, Jackobs, v. d. Bij, Marquard ('05) Accomando, Denner, Kaiser('05)

• EW corrections

Necessity of NNLO calculation for a few % level accuracy

WF	Pair Produ	uction			
	1980	1990	2000	Present	
LC	Brown	ı, Mikaelian ('79)			
NL	0	Ohnemus ('91); Fri Ohnemus('94); Dixon, Kunszt, Sigi Campbell, K. Ellis (ixione ('93); ner ('98,'99); '99)		
NN mas	ILO sless	Anastasia	ou, Glover, Tajed	la-Yeomans ('02)	
resu	mmation		Gr	azzini ('06)	
NN	LO	The p p \rightarrow W	/ W story ti	ll recently	

W Pair Production We would now like...

- … Cross sections for W Pair production at NNLO with full mass dependence
- ... And of course we have to start with the amplitudes
- ... And the difficult part on the amplitude level is the virtual corrections, in particular the two-loop diagrams contracted with the Born

W Pair Production At present (... many diagrams)

W Pair Production So what is it now at stake?

- A NNLO (4 legs, 2 loops) calculation of a process with massive particles (similar features to the recent "heavy quark production")
 Czakon, Mitov, Moch ('07) Czakon ('08)
- Color and spin averaged amplitudes
- Kinematical region: all kinematical invariants large compared to the mass of W:

$$M_W^2 \ll s, t, u$$

- We expand with respect to $m_s = M_W^2/s$
- Exact analytic result (up to terms suppressed by powers of $m_{\rm s}$)

Mellin-Barnes

Starting from the Feynman parameters representation of a diagram one goes along the following Steps:

- produce representations (MBrepresentations.m)
- analytically continue in ε to the vicinity of 0 (**MB.m**)
- expand in mass (MBasymptotics.m, Czakon)
- perform as many as possible integrations using Barnes lemmas (BarnesRoutines.m, Kosower)
- resum the remaining integrals by transforming into harmonic series (**Xsummer**)
- resum remaining constants by high-precision numerical evaluation (quadprec.m) and fit them to a transcendental basis (PSLQ)

Software

(GC, Czakon) **MBrepresentations.m** Produces representations for any **multi-**loop, **planar** or non-planar, scalar or tensor integral of any rank! (Czakon) MB.m Determination of contours, analytic continuation, expansion in a chosen parameter, numerical integration (Moch, Uwer) **XSummer Evaluation of harmonic sums** (Bailey) **PSLQ** Fitting to a transcendental basis (Czakon) quadprec.m High precision numerical evaluation with up to 64 digits

W Pair Production Catani's recipe: An important test

One loop: The IR pole structure of the renormalized amplitude can be known by only knowing the tree level amplitude:

 $|\mathcal{M}_{m}^{(1)}(\mu^{2};\{p\})\rangle_{\rm RS} = \boldsymbol{I}^{(1)}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(0)}(\mu^{2};\{p\})\rangle_{\rm RS} + |\mathcal{M}_{m}^{(1)}{}^{\rm fin}(\mu^{2};\{p\})\rangle_{\rm RS}$

Two loop: Now you need tree and one loop level amplitude:

$$\begin{split} |\mathcal{M}_{m}^{(2)}(\mu^{2};\{p\})\rangle_{\text{RS}} &= \mathbf{I}^{(1)}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(1)}(\mu^{2};\{p\})\rangle_{\text{RS}} \\ &+ \mathbf{I}^{(2)}_{\text{RS}}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(0)}(\mu^{2};\{p\})\rangle_{\text{RS}} + |\mathcal{M}_{m}^{(2)\text{fin}}(\mu^{2};\{p\})\rangle_{\text{RS}} \end{split}$$

Singular dependence embodied in the operators $I^{(1)}$ and $I^{(2)}$

Check list:

W Pair Production Conclusions (so far)

- •We have finally the full (virtual) result up to $O(m_{1}^{0})$
- •Mellin Barnes representations approach is a powerful technique
- •Not an easy one though (especially for the nonplanar graphs)
- •Very soon to come are higher power corrections (they are actually being produced at the moment)
 - Next step: Full mass dependence
 - Similar to M. Czakon [arXiv:0803.1400]
 - Deep expansion in mass around the high energy limit.
 Numerical Differential Equation method (more in the talk of T. Schutzmeier)

Caffo, Czyz, Laporta, Remiddi ('98)

Top Pair Production

Czakon, arXiv:0803.1400 Baernreuther, Czakon (in preparation)

Top Pair Production And again few words on motivation

- Top mass measurement
- Production cross section to better than 10%
- Decay mechanisms
- Searches for resonances
- Background to new physics searches

Top Pair Production

The story so far ...

NLO corrections

Nason, Dawson, Ellis ('88)

- Implemented in MCFM
 Campbell, Ellis
- LL resummation

Laenen, Smith, van Neerven ('92)

NLL resummation

Bonciani, Catani, Mangano, Nason ('98)

- NNL resummation + ...
 Kidonakis, Vogt ('03)
- NNNL resummation

Moch, Uwer ('08)

NNLO PDF evolution

Moch, Vermaseren, Vogt ('04)

1-loop squared

Koerner, Merebashvili, Rogal ('06)

• NLO tT + jet

Dittmaier, Uwer, Weinzierl ('07)

High energy asymptotics of twoloop amplitudes

quark annihilationCzakon, Mitov, Moch ('07)gluon fusionCzakon, Mitov, Moch ('07)

Full mass dependence of twoloop amplitudes

quark annihilation gluon fusion

Czakon ('08) Baernreuter, Czakon (in preparation)

Top Pair Production Structure of the result

- color and spin averaged amplitudes (can be changed)
- color decomposition for the annihilation channel

Top Pair Production Power corrections

Top Pair Production Towards a numerical solution

- Compute the high energy asymptotics of the master integrals obtaining the leading behaviour of the amplitude
- Determine the coefficients of the mass expansions using differential equations in m_s obtaining the power corrections

$$m_{s} \frac{d}{d m_{s}} M_{i}(m_{s}, x, \epsilon) = \sum_{j} C_{ij}(m_{s}, x, \epsilon) M_{j}(m_{s}, x, \epsilon)$$

- Evaluate the expansions for $m_s \ll 1$ to obtain the desired numerical precision of the boundaries
- Evolve the functions from the boundary point with differential equations first in $m_{_{\rm S}}$ and then in x (<code>ZVODE</code>)

Top Pair Production Full mass dependence

Top Pair Production

Example point

	leading color			full color			
number of masters	36			145			
number of functions	155				595		
precision	quadruple		double	quadruple		double	
evolution in m^2/s							
requested local error	10^{-20}	10^{-12}	10^{-12}	10^{-20}	10^{-12}	10^{-12}	
contour deformation	0.1	0.1	0.1	0.1	0.1	0.1	
number of steps taken	2319	618	534	2932	777	1302	
jacobian evaluation time [ms]	3.4	3.4	0.2	37	37	4.9	
evolution in x							
requested local error	10^{-18}	10^{-10}	10^{-10}	10^{-18}	10^{-10}	10^{-10}	
contour deformation	0.1	0.1	0.1	0.1	0.1	0.1	
number of steps taken	545	139	139	739	174	432	
jacobian evaluation time [ms]	8.3	8.3	0.4	150	150	17	
total evaluation time [s]	49	13	< 1	957	243	26	
ϵ^{-4} ϵ^{-4}	3	ϵ^{-2}		ϵ^{-1}		ϵ^0	
A 0.22625 1.39173315	4 -2.298174307		-4.145	-4.145752449		17.37136599	

Ю
4
0
П
\times
ົ
\sim
•
J ²
Ц Ц

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
A B	0.22625	1.391733154	-2.298174307 8 507455541	-4.145752449 6.035611156	17.37136599
	0.22625	-0.06808683395	-18.00716652	6.302454931	3.524044913
$\begin{bmatrix} D_l\\ D_h \end{bmatrix}$		-0.22625	$0.2605057339 \\ 0.5623350684$	-0.7250180282 0.1045606449	-1.935417247 -1.704747998
E_l		0.22625	-0.3323207300 -0.5623350684	7.904121951 4 528240788	2.848697837 12.73232424
F_l			-0.002000004	1.020240100	-1.984228442
F_{lh} F_h					-2.442562819 -0.07924540546

Outlook

- The ultimate goal is to have, for both the Top Pair and the Gauge Boson Pair Production, a NNLO Monte Carlo generator
- The first steps in this direction (and probably not the easier ones) have been done and many more to follow