GRACE/NLO for LHC

J. Fujimoto (KEK)
GRACE Group
@Loops & Legs 2008

Sondershausen, 22. Apr. 2008

Contents

- 1.Introduction
- 2. What is GRACE?
- 3.GR@PPA framework
- 4. Double Counting
- 5.GRACE/NLO
- 6.Summary

1. Introduction

LHC Experimental requirement

New Particle Search/Precision Measurements

LO-QCD Event generator+K-factor

Obviously not enough!

We need NLO Event generator!

Difficulties

Solutions

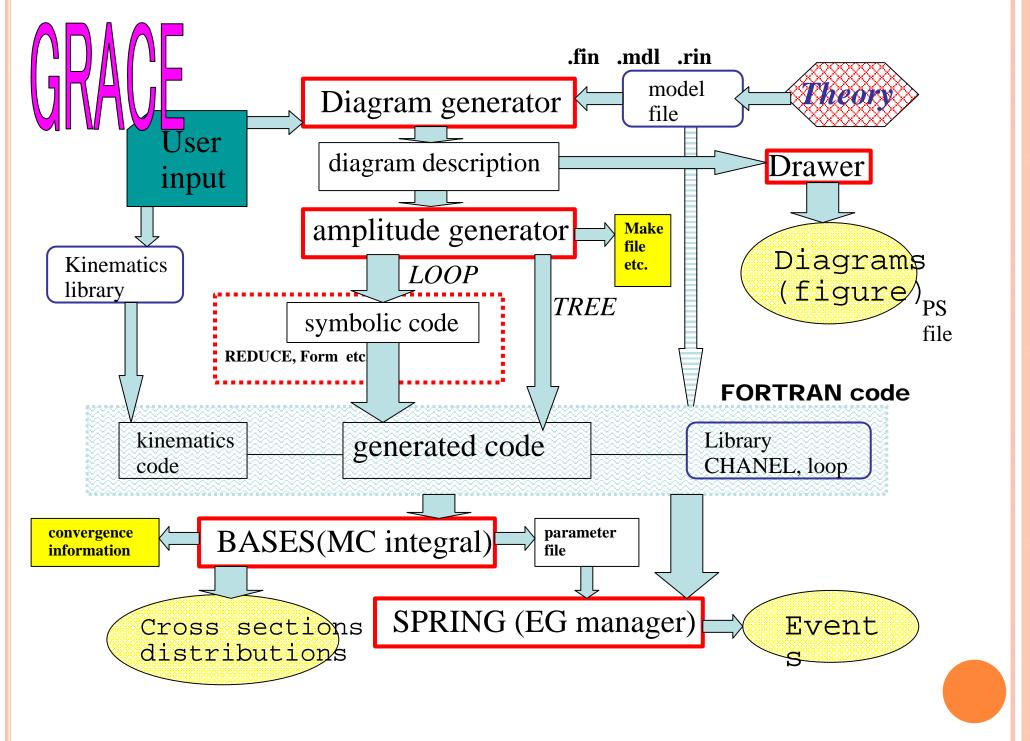
- Large number of diagrams
- Large number of processes
- Numerical instability due to a collinear singularity
- Double counting between ME and PDF/PS (two categories)

LL-subtraction

2. What is GRACE?

A generator of event generators

- Automatic generation of Feynman diagrams up to 6-loop
- Automatic generation of matrix elements up to 1-loop.
- Kinematics Library
- Loop libraries



Matrix Elements: Tree

• Tree diagrams

$$M_0(1,2\rightarrow 1,2\cdot \cdot \cdot ,n)$$
: Born

 $M_R(1,2\rightarrow 1,2\cdot \cdot \cdot ,n,n+1)$: Real radiation

GRACE: Automatic generation up to n≅6

Diagrams & FORTRAN source code

3. GR@PPA framework

Library of event generators for LHC generated by GRACE

- Treatment of proton/anti-proton
- Treatment of multi-processes
- LHA
- Interface to hadronization program
- Un-weighted events are generated
- At this moment, LO

•pp→many, TEVATRON/LHC, GR@PPA 2.7,

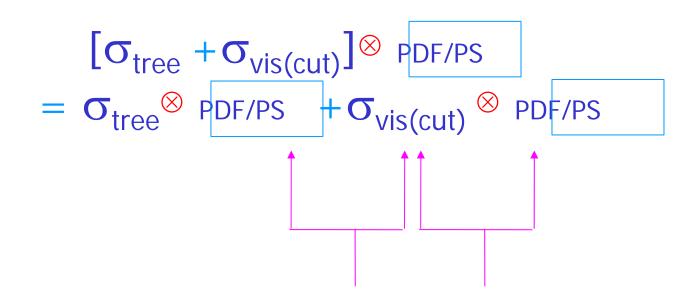
S. Tsuno et al., 2006

- *W + jets (up to 4 jets) with the subsequent W decay to a fermion pair,
- -Z + jets (up to 4 jets) with the subsequent Z decay to a fermion pair,
- **-**QCD multi-jets (up to 4 jets),
- Four bottom quarks via Z and Higgs-boson mediated processes as well as those from pure QCD interactions (same as GR@PPA_4b),
- *top-quark pair (+jet)with the subsequent decay to W and b, and the W decay to a fermion pair,
- *di-boson(WW, WZ and ZZ)+jets(up to 2jets) with the subsequent W/Z decay to a fermion pair.

N jets	Tevatron Run-II		LHC	
	$W(ev_e)$	$Z(e^+e^-)$	$W(ev_e)$	$Z(e^+e^-)$
0	$1.576(2) \times 10^{3}$	1.598(3) × 10 ²	1.116(2) × 10 ⁴	9.57(3) × 10 ²
1	$1.852(3) \times 10^{2}$	$1.829(4) \times 10^{1}$	$2.854(5) \times 10^{3}$	$2.614(7) \times 10^{2}$
2	$3.461(7) \times 10^{1}$	3.485(6)	$1.143(3) \times 10^3$	$1.082(2) \times 10^{2}$
3	6.29(2)	$6.35(2) \times 10^{-1}$	$4.82(1) \times 10^2$	$4.53(1) \times 10^{1}$
4	1.201(5)	$1.173(3) \times 10^{-1}$	$2.19(1) \times 10^2$	$2.045(5) \times 10^{1}$
2 (≥ 1b)	$3.260(6) \times 10^{-1}$	$9.24(2) \times 10^{-2}$	2.720(7)	8.68(2)
3 (≥ 1b)	$1.019(2) \times 10^{-1}$	$2.266(5) \times 10^{-2}$	4.305(9)	3.740(7)
4 (≥ 1b)	$2.947(8) \times 10^{-2}$	$3.817(5) \times 10^{-3}$	3.90(3)	$9.47(2) \times 10^{-1}$
$t\bar{t} + 0$	$5.269(9) \times 10^{-4}$	$2.248(3) \times 10^{-4}$	$3.774(7) \times 10^{-2}$	$2.682(6) \times 10^{-2}$
$t\bar{t} + 1$	$1.357(2) \times 10^{-4}$	$6.302(9) \times 10^{-5}$	$4.98(2) \times 10^{-2}$	$3.59(1) \times 10^{-2}$
$t\bar{t} + 2$	$6.86(1) \times 10^{-5}$	$5.707(5) \times 10^{-7}$	$6.52(2) \times 10^{-2}$	$1.156(2) \times 10^{-2}$

4. Double counting

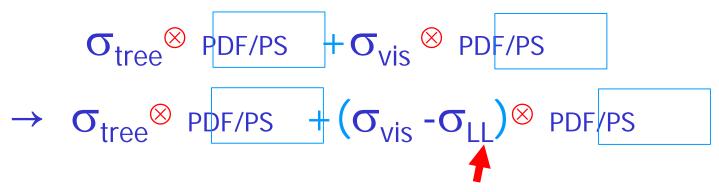
Double Counting in tree-level



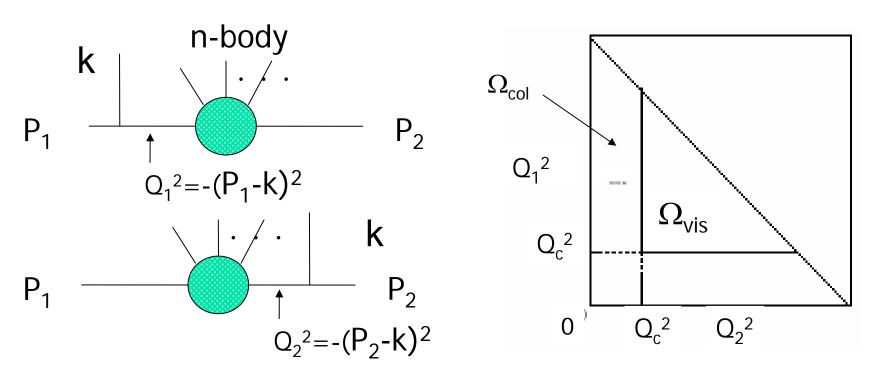
Two sources of Double Counting

A famous solution is CKKW.

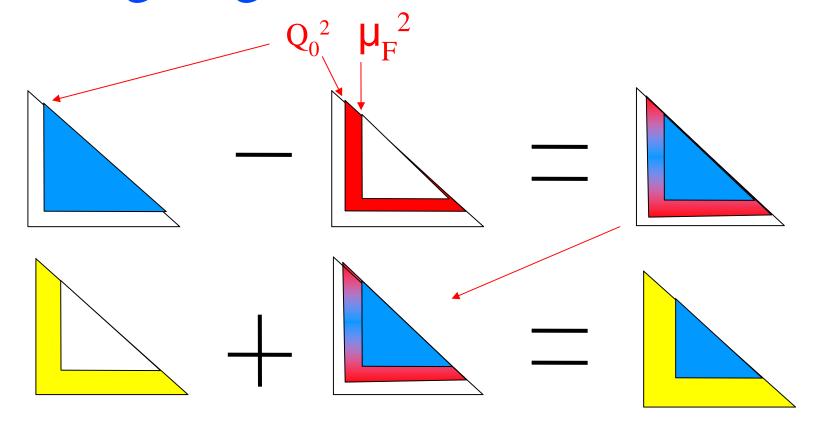
Solutions in GRACE



Leading Log subtraction



Leading Log Subtraction in GRACE

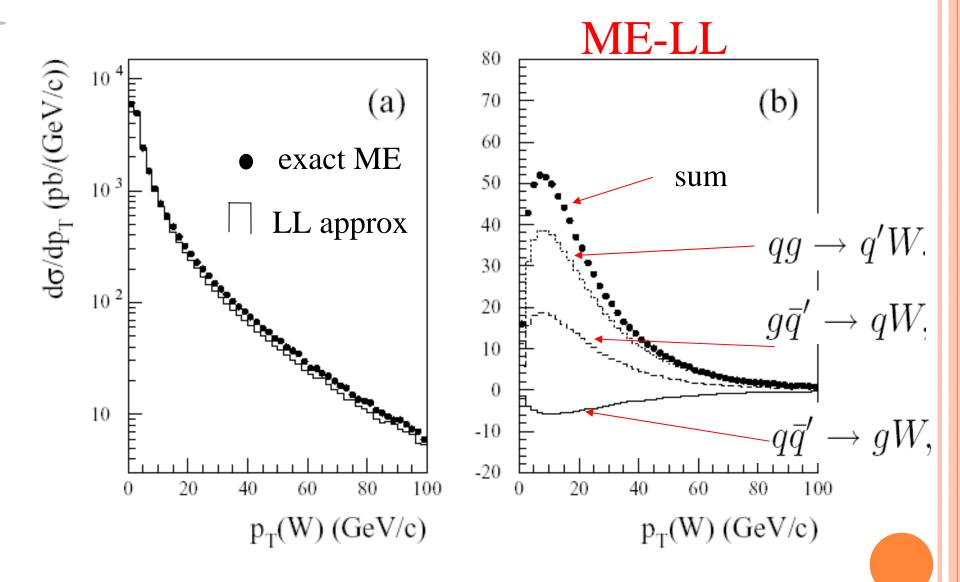


: Collinear (Leading Log) Approx.

: Exact Matrix Elements w/ PS

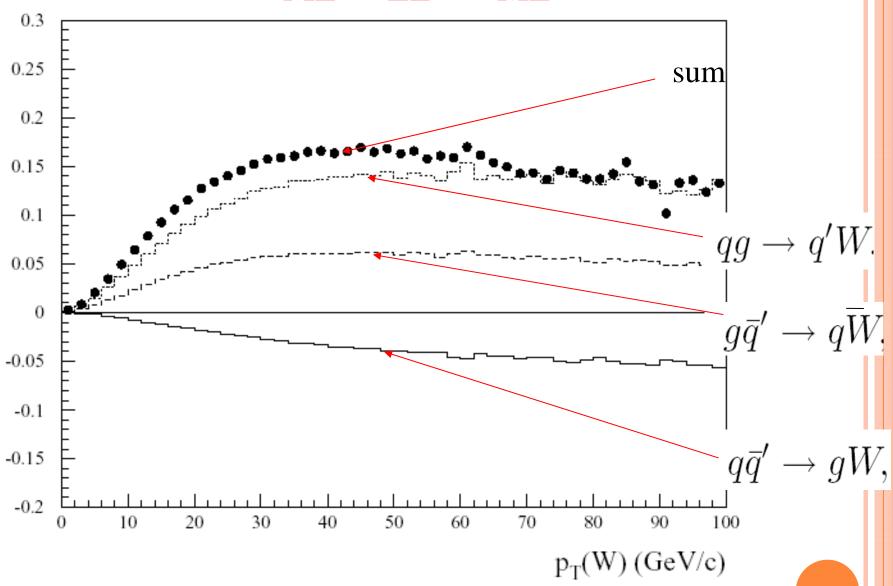
: Tree ME w/ PS

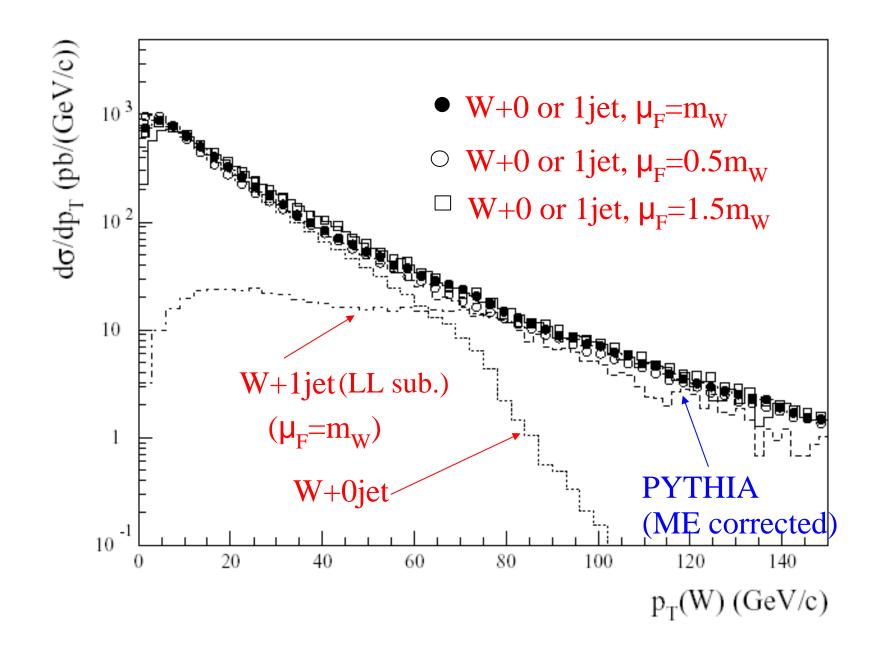
$PP \rightarrow W+jet$



hep-ph/0702138

 $p_T > 1 \text{ GeV}$

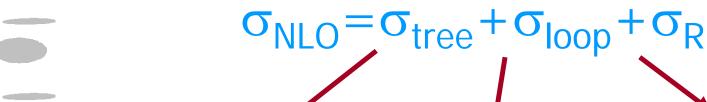




hep-ph/0702138

5. GRACE/NLO

NLO Cross sections



$$=\sigma_{\text{tree}}(1 + \delta_{\text{V}} + \delta_{\text{s/c}}) + \sigma_{\text{vis}}$$

 δ_{V} : Virtual (loop) correction

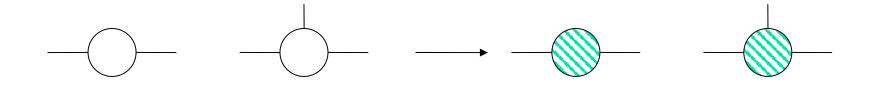
 $\delta_{\text{s/c}}$: Soft/Collinear correction

 σ_{vis} : Visible jet cross section

Treatment of Loop diagrams

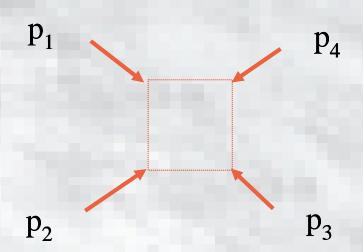
Loop diagrams

 $M_V(1,2\rightarrow 1,2\cdot \cdot \cdot ,n)$: Effective vertices (up to three point)



: Numerical calc. by CHANEL

Box Integral



$$J_{(4)}(s,t;p_1^2,p_2^2,p_3^2,p_4^2;n_x,n_y,n_z) \ = \ \frac{\Gamma(2-\varepsilon_{IR})}{(4\pi)^2 \left(4\pi \mu_R^2\right)^{\varepsilon_{IR}}} \int_0^1 dx \ \int_0^{1-x} dy \ \int_0^{1-x-y} dz \frac{x^{n_x}y^{n_y}z^{n_z}}{D^{2-\varepsilon_{IR}}},$$

$$D = -s xz - t yw - p_1^2 xy - p_2^2 yz - p_3^2 zw - p_4^2 xw - i0,$$

$$w = 1 - x - y - z,$$

$$s = (p_1 + p_2)^2,$$

$$t = (p_1 + p_4)^2.$$

Y.Kurihara Eur.Phys.J.C45(2006)427

All on-shell (massless) external legs

$$J_4(s,t;0,0,0,0;n_x,n_y,n_z) = \frac{1}{(4\pi)^2 s \ t} B(n_x + \varepsilon_{IR},n_y + n_z + \varepsilon_{IR}) n_x! \Gamma(\varepsilon_{IR}) \Gamma(1 - \varepsilon_{IR})$$

$$\times \left[\left(\frac{-\tilde{t}}{4\pi \mu_R^2} \right)^{\varepsilon_{IR}} \left(\frac{-t}{s} \right)^{n_x} \frac{B(1 + n_z, n_x + n_y + \varepsilon_{IR})}{\Gamma(n_x + \varepsilon_{IR})} \right]$$

$$\times 2F_1 \left(1 + n_x, n_x + n_y + \varepsilon_{IR}, 1 + n_x + n_y + n_z + \varepsilon_{IR}, -\frac{\tilde{u}}{\tilde{s}} \right)$$

$$+ \left(\frac{-\tilde{s}}{4\pi \mu_R^2} \right)^{\varepsilon_{IR}} \sum_{l=0}^{n_x} \left(\frac{-s}{t} \right)^l \frac{(-1)^l}{\Gamma(l + \varepsilon_{IR})(n_x - l)!} B(1 + n_y, l + n_z + \varepsilon_{IR})$$

$$\times 2F_1 \left(1 + l, l + n_z + \varepsilon_{IR}, 1 + l + n_y + n_z + \varepsilon_{IR}, -\frac{\tilde{u}}{\tilde{t}} \right) \right],$$

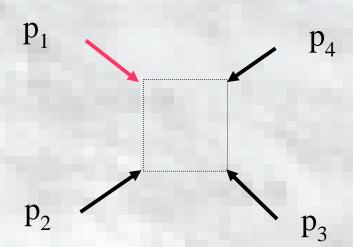
Scalar Integral

$$J_{(4)}(s,t;0,0,0,0;0,0) = \frac{1}{(4\pi)^2 s} \frac{B(\varepsilon_{IR},\varepsilon_{IR})\Gamma(1-\varepsilon_{IR})}{\varepsilon_{IR}}$$

$$\times \left[\left(\frac{-\tilde{s}}{4\pi\mu_R^2} \right)^{\varepsilon_{IR}} {}_{2}F_{1} \left(1,\varepsilon_{IR}, 1+\varepsilon_{IR}, -\frac{\tilde{u}}{\bar{t}} \right) + \left(\frac{-\tilde{t}}{4\pi\mu_R^2} \right)^{\varepsilon_{IR}} {}_{2}F_{1} \left(1,\varepsilon_{IR}, 1+\varepsilon_{IR}, -\frac{\tilde{u}}{\tilde{s}} \right) \right]$$

This result is compared with G. Duplanžić, B. Nižić, Eur. Phys. J. C 20, 357 (2001)

One off-shell box integral



$$\begin{split} &J_4(s,t;p_1^2,0,0,0;n_x,n_y,n_z) = \\ &\frac{\Gamma(2-\varepsilon_{IR})}{(4\pi)^2 \left(4\pi \mu_R^2\right)^{\varepsilon_{IR}}} \int_0^1 dx \, \int_0^{1-x} dy \, \int_0^{1-x-y} dz \frac{x^{n_x}y^{n_y}z^{n_z}}{\left(-xzs-y(1-x-y-z)t-p_1^2xy-i0\right)^{2-\varepsilon_{IR}}} \end{split}$$

$$= \frac{1}{(4\pi)^{2}s} \frac{1}{t} B(n_{x} + \varepsilon_{IR}, n_{y} + n_{z} + \varepsilon_{IR}) n_{x}! \Gamma(\varepsilon_{IR}) \Gamma(1 - \varepsilon_{IR})$$

$$\times \left[\left(\frac{-\tilde{t}}{4\pi\mu_{R}^{2}} \right)^{\varepsilon_{IR}} \left(\frac{-t}{s} \right)^{n_{x}} \frac{B(1 + n_{z}, n_{x} + n_{y} + \varepsilon_{IR})}{\Gamma(n_{x} + \varepsilon_{IR})} \mathcal{I}^{(1)} \right]$$

$$+ \left(\frac{-\tilde{s}}{4\pi\mu_{R}^{2}} \right)^{\varepsilon_{IR}} \sum_{l=0}^{n_{x}} \frac{(-1)^{l} B(1 + n_{y}, l + n_{z} + \varepsilon_{IR})}{\Gamma(l + \varepsilon_{IR})(n_{x} - l)!} \mathcal{I}^{(2)}_{l} \right]$$

$$\mathcal{I}^{(1)} = B(1+n_z, n_x+n_y+\varepsilon_{IR}) \, _2F_1\left(1+n_x, n_x+n_y+\varepsilon_{IR}, 1+n_x+n_y+n_z+\varepsilon_{IR}, -\frac{\tilde{u}}{\tilde{s}}\right)$$

$$\mathcal{I}_{l}^{(2)} = \sum_{k_{1}=0}^{n_{z}} n_{z} C_{k_{1}} \left(\frac{s}{p_{1}^{2}-s}\right)^{n_{y}+k_{1}+n_{y}+k_{1}} \sum_{k_{2}=0}^{n_{y}+k_{1}} C_{k} (-1)^{n_{y}+k_{2}} \left(\frac{-t}{s}\right) \\
\times \int_{0}^{1} dw \left(1+\frac{\tilde{u}}{\tilde{s}}w\right)^{-(l+1)} \left(1+\frac{\tilde{t}+\tilde{u}}{\tilde{s}}w\right)^{k_{2}+l-1+\varepsilon_{IR}} \\
= \sum_{k_{1}=0}^{n_{z}} \sum_{k_{2}=0}^{n_{y}+k_{1}} n_{z} C_{k_{1}-n_{y}+k_{1}} C_{k} (-1)^{k_{1}+k_{2}} \left(\frac{s}{p_{1}^{2}-s}\right)^{n_{y}+k_{1}} \frac{1}{l+k_{2}+\varepsilon_{IR}} \left(1+\frac{u}{t}\right)^{l} \\
\times \left[{}_{2}F_{1} \left(1+l,l+k_{2}+\varepsilon_{IR},1+l+k_{2}+\varepsilon_{IR},-\frac{\tilde{u}}{t}}\right) - \left(\frac{\tilde{p}_{1}^{2}}{\tilde{s}}\right)^{l+k_{2}+\varepsilon_{IR}} {}_{2}F_{1} \left(1+l,l+k_{2}+\varepsilon_{IR},1+l+k_{2}+\varepsilon_{IR},-\frac{\tilde{u}\tilde{p}_{1}^{2}}{t\tilde{s}}\right) \right],$$

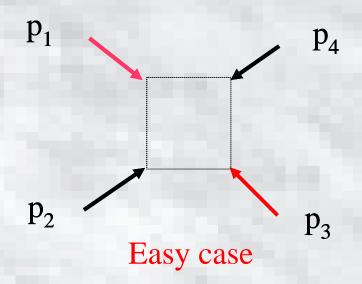
Scalar Integral

$$J_{4}(s,t;p_{1}^{2},0,0,0;0,0,0) = \frac{1}{(4\pi)^{2}s} \frac{B(\varepsilon_{IR},\varepsilon_{IR})\Gamma(1-\varepsilon_{IR})}{\varepsilon_{IR}}$$

$$\times \left[\left(\frac{-\tilde{s}}{4\pi\mu_{R}^{2}} \right)^{\varepsilon_{IR}} {}_{2}F_{1} \left(1,\varepsilon_{IR},1+\varepsilon_{IR},-\frac{\tilde{u}}{\bar{t}} \right) + \left(\frac{-\tilde{t}}{4\pi\mu_{R}^{2}} \right)^{\varepsilon_{IR}} {}_{2}F_{1} \left(1,\varepsilon_{IR},1+\varepsilon_{IR},-\frac{\tilde{u}}{\tilde{s}} \right) - \left(\frac{-\tilde{p}_{1}^{2}}{4\pi\mu_{R}^{2}} \right)^{\varepsilon_{IR}} {}_{2}F_{1} \left(1,\varepsilon_{IR},1+\varepsilon_{IR},-\frac{\tilde{u}\tilde{p}_{1}^{2}}{\bar{t}\tilde{s}} \right) \right],$$

This result is compared with G. Duplan \check{z} i \acute{c} , B. Ni \check{z} i \acute{c} , Eur. Phys. J. C **20**, 357 (2001)

Two off-shell box integral



$$\begin{split} J_4(s,t;p_1^2,0,p_3^2,0;n_x,n_y,n_z) &= \frac{\Gamma(2-\varepsilon_{IR})}{(4\pi)^2 \left(4\pi\mu_R^2\right)^{\varepsilon_{IR}}} \\ \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \frac{x^{n_x}y^{n_y}z^{n_z}}{\left(-xzs-y(1-x-y-z)t-p_1^2xy-p_3^2z(1-x-y-z)-i0\right)^{2-\varepsilon_{IR}}} \\ &= \frac{1}{(4\pi)^2(s-p_3^2)(t-p_3^2)} B(n_x+\varepsilon_{IR},n_y+n_z+\varepsilon_{IR})n_x! \Gamma(\varepsilon_{IR}) \Gamma(1-\varepsilon_{IR}) \end{split}$$

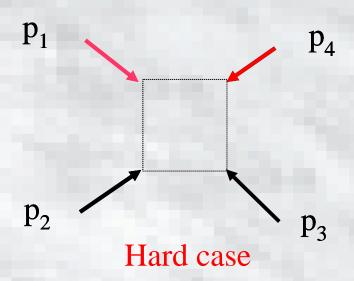
$$\times \left[\left(-\frac{\tilde{t} - p_3^2}{4\pi\mu_R^2} \right)^{\varepsilon_{IR}} \left(-\frac{t - p_3^2}{s - p_3^2} \right)^{n_x} \frac{1}{\Gamma(n_x + \varepsilon_{IR})} \mathcal{I}^{(1)} + \left(\frac{-\tilde{s}}{4\pi\mu_R^2} \right)^{\varepsilon_{IR}} \sum_{l=0}^{n_x} \frac{(-1)^l}{\Gamma(l + \varepsilon_{IR})(n_x - l)!} \mathcal{I}_l^{(2)} \right]$$

$$\mathcal{I}^{(1)} = \frac{1}{n_x + \varepsilon_{IR}} \sum_{k_1=0}^{n_x} \sum_{k_2=0}^{n_y+k_1} \sum_{n_z \in I_R} C_{k_1 - n_y+k_1} C_{k_2} (-1)^{k_1+k_2} \left(\frac{p_3^2 - s}{u}\right)^{n_y+k_1} (1 - \alpha)^{k_2 - n_z - 1} \\
\times \left[\left(1 + \frac{\tilde{p}_3^2}{\tilde{t} - \tilde{p}_3^2}\right)^{n_x + \varepsilon_{IR}} {}_{2}F_{1} \left(1 + n_x - k_2, n_x + \varepsilon_{IR}, 1 + n_x + \varepsilon_{IR}, \frac{\tilde{u}/(\tilde{s} - \tilde{p}_3^2) + \alpha}{\alpha - 1}\right) \right. \\
- \left. \left(\frac{\tilde{p}_3^2}{\tilde{t} - \tilde{p}_3^2}\right)^{n_x + \varepsilon_{IR}} {}_{2}F_{1} \left(1 + n_x - k_2, n_x + \varepsilon_{IR}, 1 + n_x + \varepsilon_{IR}, \frac{\alpha}{\alpha - 1}\right) \right]$$

$$\mathcal{I}_{l}^{(2)} = \sum_{k_{1}=0}^{n_{z}} \sum_{k_{2}=0}^{n_{y}+k_{1}} \sum_{n_{z}} C_{k_{1} - n_{y}+k_{1}} C_{k_{2}} (-1)^{k_{1}+k_{2}} \left(\frac{s}{s-p_{1}^{2}}\right)^{n_{y}+k_{1}} \frac{1}{l+k_{2}+\varepsilon_{IR}} \left(\frac{1}{1-\beta}\right)^{l+1} \left(\frac{t-p_{3}^{2}}{t+u-p_{3}^{2}}\right) \left(\frac{s}{s-p_{3}^{2}}\right)^{l+1} \times \left[{}_{2}F_{1} \left(1+l,l+k_{2}+\varepsilon_{IR},1+l+k_{2}+\varepsilon_{IR},\frac{\beta}{\beta-1}\right) - \left(\frac{\tilde{p_{1}}^{2}}{\tilde{s}}\right)^{l+k_{2}+\varepsilon_{IR}} {}_{2}F_{1} \left(1+l,l+k_{2}+\varepsilon_{IR},1+l+k_{2}+\varepsilon_{IR},\frac{\beta}{\beta-1}\frac{\tilde{p_{1}}^{2}}{\tilde{s}}\right) \right]$$

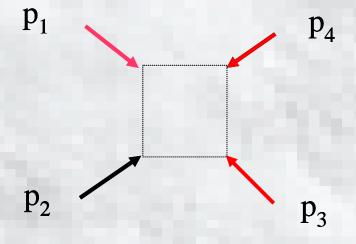
$$\alpha \ = \ \frac{\tilde{p}_3^2}{\tilde{t}-\tilde{p}_3^2}\frac{\tilde{u}}{\tilde{s}-\tilde{p}_3^2}, \ \beta = \frac{\tilde{u}}{\tilde{s}-\tilde{p}_3^2}\frac{\tilde{s}}{\tilde{t}+\tilde{u}-\tilde{p}_3^2}$$

Two off-shell box integral



Three off-shell box integral

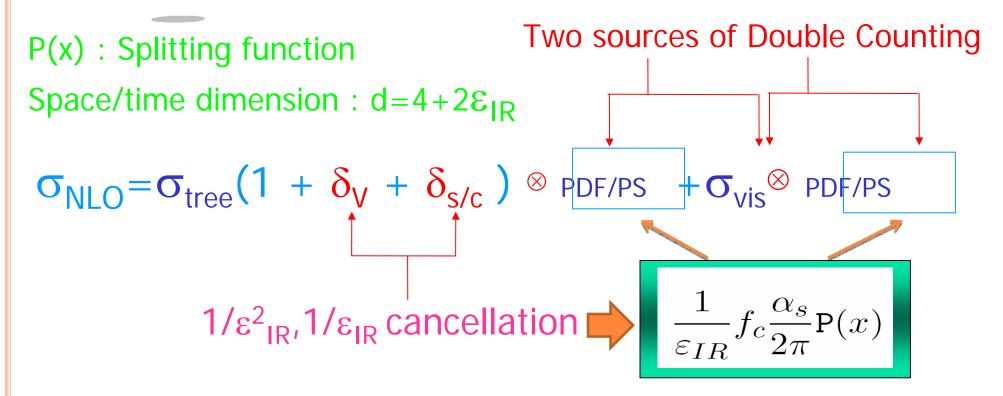
Tensor integral



Analytic expression

by T. Kaneko

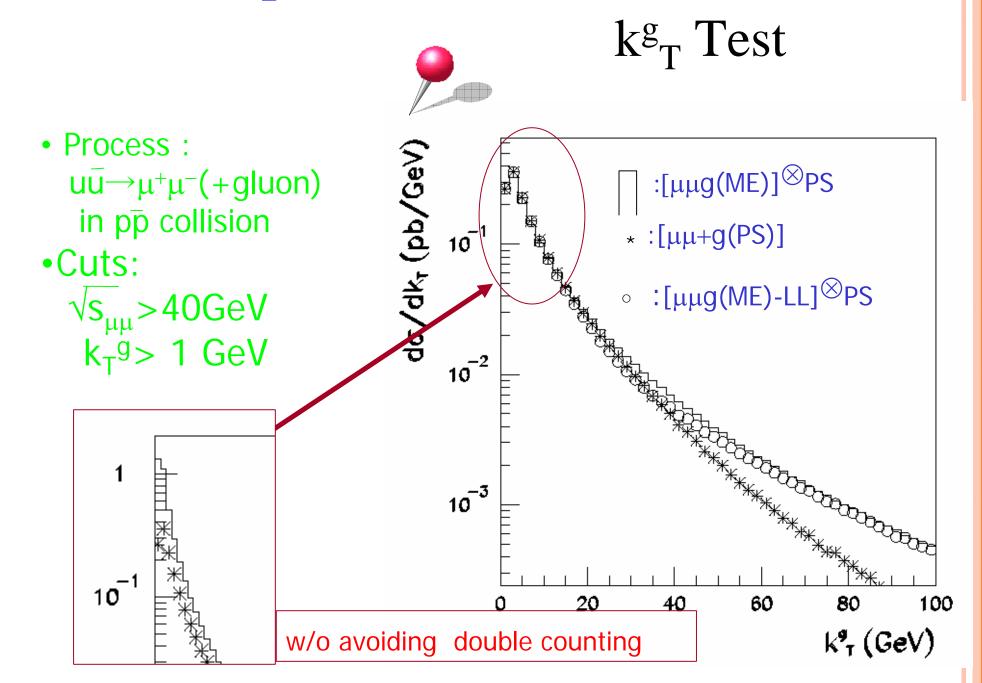
Double Counting in NLO



Solutions in GRACE/NLO

$$[\sigma_{\text{tree}}(1 + \delta_{\text{V}} + \delta_{\text{s/c}}) \otimes PDF/PS] + [\sigma_{\text{vis}} - \sigma_{\text{LL}}] \otimes PDF/PS$$

Drell-Yan process



Test process:PP→W+jet

$$\bullet \sqrt{s}=14 \text{ TeV}$$

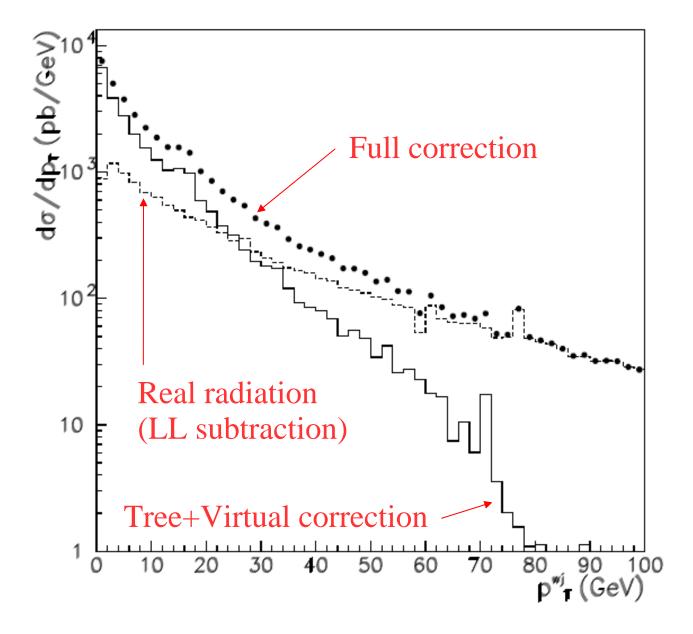
•Cuts:
$$p_T^W > 20 \text{GeV}, p_T^g > 20 \text{GeV}$$

$$-\mu_F = \mu_R = m_W = 80.2 GeV$$

IR cancellation

$$1/\epsilon_{IR}^{2}, 1/\epsilon_{IR}$$
 O(10⁻¹⁰)

Transverse momentum distribution of W-jet



 $P_T^W > 20 GeV$

 $\sigma_{NLO} = 7.06 \cdot 10^4 \text{ pb}$

Test process:PP→γγ under FJPPL collaboration

$$\bullet \sqrt{s}=14 \text{ TeV}$$

•Cuts:
$$E_v > 10 \text{GeV}, 10^{\circ} < \theta_v < 170^{\circ}, \theta_{vv} > 10^{\circ}$$

$$\bullet \mu_F = \mu_R = s_0$$

$$\bullet \sigma_{\text{tree}} = 7.35 \bullet 10^2 \text{ pb}$$

$$\bullet \sigma_{\text{tree+virtual}}^{\text{tree}} = 1.32 \bullet 10^{3} \text{ pb}$$

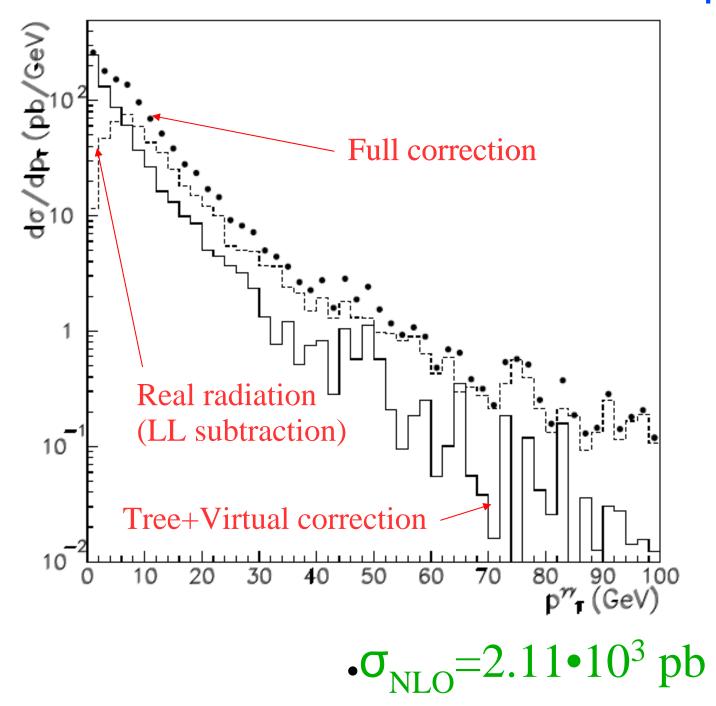
•
$$\sigma_{\text{real radiation}}^{\text{tree+virtual}} = 9.32 \cdot 10^2 \text{ pb}$$

IR cancellation

$$1/\epsilon_{\rm IR}^2$$
, $1/\epsilon_{\rm IR}$

$$O(10^{-10})$$

Transverse momentum distribution of yy



6. Summary

- (1) QCD-NLO Matrix Elements
 - Automatic generation by GRACE
- (2) GR@PPA framework is ready for LHC
- (3) Double count treatment
 - LL-subtraction method
- (4) From GRACE/NLO to GR@PPA/NLO
 - ODrell-Yan process
 - prompt photon
 - Di-photon
 - V+1jet,2jet, VV+1 jet