$e^+e^- \rightarrow 3$ jets and event shapes at NNLO

Aude Gehrmann-De Ridder

in collaboration with T. Gehrmann, E.W.N. Glover, G. Heinrich

Loops and Legs in Quantum Field Theory

Sondershausen, Germany, 21.04.08

$e^+e^- \rightarrow 3$ jets and event shapes

Classical QCD observable

- testing ground for QCD: perturbation theory, power corrections and logarithmic resummation
- ${}$ jet observables enable a precise determination of the strong coupling constant $lpha_s$
- At present: current error on α_s from jet observables dominated by theoretical uncertainty:
 S. Bethke, 2006

 $\alpha_s(M_Z) = 0.121 \pm 0.001 (\text{experiment}) \pm 0.005 (\text{theory})$

- theoretical uncertainty largely from missing higher orders
- current status: NLO plus NLL resummation
- \blacksquare \rightarrow NNLO corrections to jet observables are needed !

Observing "free" quarks and gluons at colliders QCD describes quarks and gluons; experiments observe hadrons

- \checkmark describe parton \longrightarrow hadron transition (fragmentation)
- define appropriate final states, independent of particle type in final state (jets)

Jets

- experimentally: hadrons with common momentum direction
- theoretically: partons with common momentum direction
- Event : characterized by the number of jets it contains, determined with a jet algorithm

Jet Observables

Jets in Perturbative QCD

Jet Description

Partons are combined into jets using the same jet algorithm as in experiment

Current state-of-the-art: NLO plus resummation of all-order logarithms (NLLA) Need for higher orders:

better matching of parton level and hadron level

Jets in Perturbation Theory

General structure:

Jet algorithm acts differently on different partonic final states

Divergencies from soft and collinear real and virtual contributions must be extracted before application of jet algorithm \rightarrow subtraction formalism needed

consider $e^+e^- \rightarrow 3$ jets as an example

Ingredients to NNLO $e^+e^- \rightarrow 3$ -jet

Two-loop matrix elements

$|\mathcal{M}|^2_{\text{2-loop},3}$ partons

explicit infrared poles from loop integrals

L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis,

E. Remiddi; S. Moch, P. Uwer, S. Weinzierl

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation Z. Bern, L. Dixon, D. Kosower, S. Weinzierl;

J. Campbell, D.J. Miller, E.W.N. Glover

Tree level matrix elements

implicit infrared poles due to double unresolved radiation

K. Hagiwara, D. Zeppenfeld; F.A. Berends, W.T. Giele, H. Kuijf; N. Falck, D. Graudenz, G. Kramer

Infrared Poles cancel in the sum

NNLO Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} , \end{split}$$

$$\square$$
 d σ^S_{NNLO} : real radiation subtraction term for d σ^R_{NNLO}

- $d\sigma_{NNLO}^{V,2}$: two-loop virtual corrections
- Subtraction terms constructed using the antenna subtraction method at NNLO
 T. Gehrmann, N. Glover, AG.

Each line above is finite numerically and free of infrared ϵ -poles — numerical programme (EERAD3) T. Gehrmann, N. Glover, G. Heinrich, AG.

Three-jet cross section at NNLO

NNLO corrections: jet rates

Three-jet fraction in Durham jet algorithm

$$y_{i,j,D} = \frac{2\min(E_i^2, E_j^2) (1 - \cos \theta_{ij})}{E_{vis}^2}$$

• vary
$$\mu = [M_Z/2; 2M_Z]$$

determine minimal and maximal values

$$\delta = \frac{\max(\sigma) - \min(\sigma)}{2\sigma(\mu = M_Z)}$$

- NNLO corrections small
- substantial reduction of scale dependence
- better description towards lower jet resolution

Three-jet cross section at NNLO

NNLO corrections: jet rates

substantial improvement towards lower $y_{
m cut}$

two-jet rate now NNNLO

$$e^+e^- \rightarrow 3$$
 jets and event shapes

Event shape variables

- Characterize the geometrical properties of final state events, are infrared safe
 - easily accesible experimentally

e.g. Thrust in e^+e^-

$$T = \max_{\vec{n}} \frac{\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}|}{\sum_{i=1}^{n} |\vec{p_i}|}$$

limiting values:

- back-to-back (two-jet) limit: T = 1
- spherical limit: T = 1/2
- poorly convergent perturbative expansion for $T \longrightarrow 1$ resummation needed

Event shape variables

Event shapes variables

Standard Set of LEP

Thrust (E. Farhi)

$$T = \max_{\vec{n}} \left(\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| \right) / \left(\sum_{i=1}^{n} |\vec{p_i}| \right)$$

Heavy jet mass (L. Clavelli, D. Wyler)

$$\rho = M_i^2/s = \frac{1}{E_{\text{vis}}^2} \left(\sum_{k \in H_i} |\vec{p_k}|\right)^2$$

C-parameter: eigenvalues of the tensor (G. Parisi)

$$\Theta^{\alpha\beta} = \frac{1}{\sum_{k} |\vec{p_k}|} \frac{\sum_{k} p_k^{\alpha} p_k^{\beta}}{\sum_{k} |\vec{p_k}|}$$

Jet broadenings (S. Catani, G. Turnock, B. Webber)

$$B_{i} = \left(\sum_{k \in H_{i}} |\vec{p_{k}} \times \vec{n}_{T}|\right) / \left(2\sum_{k} |\vec{p_{k}}|\right)$$

 $B_W = \max(B_1, B_2)$ $B_T = B_1 + B_2$

 $3j \rightarrow 2j$ transition parameter in Durham algorithm y_{23}^D S.Catani, Y.L.Dokshitzer, M.Olsson, G.Turnock, B.Webber

 $e^+e^-
ightarrow 3$ jets and event shapes at NNLO – p.13

Event shapes at NNLO

NNLO thrust and heavy mass distributions

- theory uncertainty reduced by about 40 %
- Iarge 1 T, $\rho > 0.33$: kinematically forbidden at LO
- Small 1 T, ρ : two-jet region, need matching onto NLL resummation T. Gehrmann, G. Luisoni, H. Stenzel
 - need to include hadronization corrections

Event shapes at NLLA+NNLO

Matching onto resummation

T. Gehrmann, G. Luisoni, H. Stenzel

- resummation to NLLA (S. Catani, L. Trentadue, G. Turnock, B. Webber;
 Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam; A. Banfi, G. Zanderighi)
- NLO and NLLA+NLO differ in normalisation throughout the full kinematical range
- difference between NNLO and NLLA+NNLO restricted to the two-jet region
- improved scale-dependence in three-jet region
- Scale-dependence of NLLA dominant → need higher orders in resummation
 T. Becher, M. Schwartz: thrust beyond NLLA $e^{+}e^{-} \rightarrow 3 \text{ jets and event shapes at NNLO p.15}$

Comparison with data

High precision data from all LEP experiments, compare here to ALEPH

- include quark mass effects to NLO P. Nason, C. Oleari W. Bernreuther, A. Brandenburg, P. Uwer G. Rodrigo, A. Santamaria
- Include hadronization corrections HERWIG: B. Webber et al. ARIADNE: T. Sjostrand et al.
 - try new fit of α_s , based on ALEPH analysis G. Dissertori, T. Gehrmann,
 - G. Heinrich, H. Stenzel, AG

Extraction of α_s

Result for all ALEPH event shapes of LEP1/LEP2

 $\alpha_s(M_Z) = 0.1240 \pm 0.0008(stat) \pm 0.0010(exp) \pm 0.0011(had) \pm 0.0029(theo)$

Summary and Conclusions

- Solution Completed the calculation of the NNLO corrections to $e^+e^- \rightarrow 3$ jets using the antenna subtraction method
- Presented results for the 3-jet cross section (Durham algorithm)
 - improvement towards lower y_{cut}
 - reduced scale dependence
- Presented results for event shapes in e^+e^- annihilation
 - size of the NNLO corrections sizeable but not uniform
 - improved theoretical uncertainty
 - considerably better consistency between observables
 - **•** new NNLO extraction of α_s , more phenomenology to come
- next steps
 - α_s from NLLA+NNLO
 - jet rate studies with different jet algorithms ...
- Precision calculations for jet observables at LHC in progress

Back-up slides

Colour structure of NNLO 3-jet

Decomposition into leading and subleading colour terms

$$\sigma_{NNLO} = (N^2 - 1) \left[N^2 A_{NNLO} + B_{NNLO} + \frac{1}{N^2} C_{NNLO} + NN_F D_{NNLO} + \frac{N_F}{N} E_{NNLO} + N_F^2 F_{NNLO} + N_{F,\gamma} \left(\frac{4}{N} - N \right) G_{NNLO} \right]$$

last term: closed quark loop coupling to vector boson, numerically tiny

$$N_{F,\gamma} = \frac{\left(\sum_{q} e_{q}\right)^{2}}{\sum_{q} e_{q}^{2}}$$

- most subleading colour: C_{NNLO} , E_{NNLO} , F_{NNLO} , (G_{NNLO}) QED-type contributions: gluons → photons
 - simplest term: F_{NNLO} , only 3 parton and 4 parton contributions

Colour-ordered antenna functions

Antenna Functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \checkmark three-parton antenna \longrightarrow one unresolved parton
- **four-parton antenna** \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements

Quark-antiquark

consider subleading colour (gluons photon-like)

$$|M_{q\bar{q}ggg}|^2(1,3,4,5,2) \xrightarrow{1||3} |M_{q\bar{q}gg}|^2(\widetilde{13},4,5,\widetilde{23}) \times X_{132}$$

with

$$X_{132} = \frac{|M_{q\bar{q}g}|^2}{|M_{q\bar{q}}|^2} \equiv A_3^0(1_q, 3_g, 2_{\bar{q}})$$

Quark-gluon

Off-shell matrix element: violates SU(3) gauge invariance

Quark-gluon

Construct colour-ordered qg antenna function from SU(3) gauge-invariant decay: neutralino \rightarrow gluino + gluon (T. Gehrmann, E.W.N. Glover, AG)

Gluino \tilde{g} mimics quark and antiquark (same Dirac structure), but is octet in colour space

 $\tilde{\chi} \rightarrow \tilde{g}g$ described by effective Lagrangian H. Haber, D. Wyler

$$\mathcal{L}_{\rm int} = i\eta \overline{\psi}^a_{\tilde{g}} \sigma^{\mu\nu} \psi_{\tilde{\chi}} F^a_{\mu\nu} + (\text{h.c.})$$

Antenna function

$$X_{134} = \frac{|M_{\tilde{g}q'\bar{q}'}|^2}{|M_{\tilde{g}g}|^2} \equiv E_3^0(1_q, 3_{q'}, 4_{\bar{q}'})$$

 $|M_{q\bar{q}gggg}|^2(1,3,4,5,2) \xrightarrow{3||4} |M_{q\bar{q}gg}|^2(1,\widetilde{34},\widetilde{45},2) \times X_{345}$

 $H \rightarrow gg$ described by effective Lagrangian F. Wilczek; M. Shifman, A. Vainshtein, V. Zakharov

$$\mathcal{L}_{\rm int} = \frac{\lambda}{4} H F^a_{\mu\nu} F^{\mu\nu}_a$$

Antenna function

$$X_{345} = \frac{|M_{ggg}|^2}{|M_{gg}|^2} \equiv F_3^0(3_g, 4_g, 5_g)$$

$$e^+e^- \to 3 \text{ jets and event shapes at NNLO - p.25}$$

	tree level	one loop
quark-antiquark		
$qgar{q}$	$A^0_3(q,g,ar q)$	$A^1_3(q,g,ar{q}),\ \tilde{A}^1_3(q,g,ar{q}),\ \hat{A}^1_3(q,g,ar{q})$
$qggar{q}$	$A^0_4(q,g,g,ar q), ilde A^0_4(q,g,g,ar q)$	
qq'ar q'ar q	$B^0_4(q,q',ar q',ar q)$	
qqar qar q	$C_4^0(q,q,ar q,ar q)$	
quark-gluon		
qgg	$D_3^0(q,g,g)$	$D^1_3(q,g,g), \hat{D}^1_3(q,g,g)$
qggg	$D_4^0(q,g,g,g)$	
qq'ar q'	$E^0_3(q,q',ar q')$	$E_3^1(q,q',\bar{q}'), \tilde{E}_3^1(q,q',\bar{q}'), \hat{E}_3^1(q,q',\bar{q}')$
qq'ar q'g	$E_4^0(q,q',ar q',g), \tilde E_4^0(q,q',ar q',g)$	
gluon-gluon		
ggg	$F^0_3(g,g,g)$	$F_3^1(g,g,g),\hat{F}_3^1(g,g,g)$
gggg	$F_4^0(g,g,g,g)$	
gqar q	$G^0_3(g,q,ar q)$	$G_3^1(g,q,ar{q}), \tilde{G}_3^1(g,q,ar{q}), \hat{G}_3^1(g,q,ar{q})$
gqar qg	$G^0_4(g,q,ar q,g), ilde G^0_4(g,q,ar q,g)$	
q ar q q' ar q'	$H^0_4(q,ar q,q',ar q')$	

Numerical Implementation

Parton-level event generator

Starting point: $e^+e^- \rightarrow 4$ jets at NLO (EERAD2: J. Campbell, M. Cullen, N. Glover)

- contains already 4-parton and 5-parton matrix elements
- is based on NLO antenna subtraction

additions:

- NNLO subtraction terms (5-parton channel)
- 1-loop-single unresolved integrated subtraction term (4-parton channel)
- 2-loop matrix element (3-parton channel)

checks:

- analytic cancellation of infrared poles
- Iocal cancellations along phase space trajectories approaching singular limits
- Confirmation of our result by independent calculation of all logarithmically enhanced terms in the thrust distribution using the SCET formalism very recently: T. Becher, M. Schwartz

Extraction of α_s

Uncertainty from renormalisation scale

Event shapes at NNLO

NNLO corrections: broadenings

wide jet boadening B_W

0.7 0.8 $B_W~1/\sigma_{had}~d\sigma/d~B_W$ B_T 1/ σ_{had} do/d B_T ALEPH data **NNLO** NNLO ALEPH data 0.6 NLO NLO 0.6 0.5 LO LO 0.4 0.4 $Q = M_7$ $Q = M_7$ 0.3 $\alpha_{s}(M_{7}) = 0.1189$ $\alpha_{s}(M_{7}) = 0.1189$ 0.2 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0 0 B_{W} Β_T

total jet boadening B_T

- **Solution** NNLO corrections for B_W smaller than for B_T
- again require matching onto NLL resummation and hadronization corrections
- \blacksquare observe: small corrections for Y_3 ; large corrections for C
- reduction of dependence on renormalisation scale by 30–60%

Three-jet cross section at NNLO

NNLO corrections: jet rates

substantial improvement towards lower $y_{
m cut}$

two-jet rate now NNNLO

Event shapes at NNLO+NLLA

NNLO+NLLA thrust and heavy mass

(NNLO +NLLA) compared to (NNLO) prediction

- slightly better description towards the 2-jet limit
- In the 3-jet region, two predictions in agreement
- further improvement needed: by including hadronization corrections

NLO Subtraction

Structure of NLO *m*-jet cross section (subtraction formalism): Z. Kunszt, D. Soper

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NLO}^R - \mathrm{d}\sigma_{NLO}^S \right) + \left[\int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^S + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NLO}^V \right]$$

General methods at NLO

Dipole subtraction

S. Catani, M. Seymour; NNLO: S. Weinzierl

E-prescription

S. Frixione, Z. Kunszt, A. Signer; NNLO: S. Frixione, M. Grazzini; V. Del Duca, G. Somogyi, Z. Trocsanyi

Antenna subtraction (derived from physical matrix elements) D. Kosower; J. Campbell, M. Cullen, N. Glover; NNLO: T Gehrmann, E.W.N. Glover, AG

Real Corrections at NNLO

Infrared subtraction terms

 $m + 2 \rightarrow m + 1$ pseudopartons $\rightarrow m$ jets:

- Double unresolved configurations:
 - triple collinear

m+2 partons $\rightarrow m$ jets:

- double single collinear
- soft/collinear
- double soft
- J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini

Issue: find subtraction functions which

- approximate full m + 2 matrix element in all singular limits
- are sufficiently simple to be integrated analytically

- Single unresolved configurations:
 - collinear
 - soft

NLO Antenna Subtraction

Building block of $d\sigma_{NLO}^S$: NLO-Antenna function X_{ijk}^0 and phase space $d\Phi_{X_{ijk}}$

$$d\sigma_{NLO}^{S} = \mathcal{N} \sum_{m+1} \sum_{j} d\Phi_{m}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1}; q) \cdot d\Phi_{X_{ijk}}(p_{i}, p_{j}, p_{k}; \tilde{p}_{I} + \tilde{p}_{K})$$
$$\times X_{ijk}^{0} |\mathcal{M}_{m}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1})|^{2} J_{m}^{(m)}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1})$$

Integrated subtraction term (analytically)

$$|\mathcal{M}_m|^2 J_m^{(m)} \mathrm{d}\Phi_m \int \mathrm{d}\Phi_{X_{ijk}} X_{ijk}^0$$

can be combined with ${\rm d}\sigma^V_{NLO}$

Outlook

Next steps:

- fit α_s using NLLA+NNLO
 G. Luisoni, H. Stenzel, T. Gehrmann
- study jet rates in different algorithms
- study moments of event shapes
- revisit analytic power corrections
 Y.L. Dokshitzer, A. Lucenti, G. Marchesini, 10
 G.P. Salam
 - electroweak corrections
 - resummation and beyond at NLLA

 $e^+e^- \rightarrow 3$ jets and event shapes at NNLO – p.34

Double Real Subtraction

Tree-level real radiation contribution to m jets at NNLO

$$d\sigma_{NNLO}^{R} = \mathcal{N} \sum_{m+2} d\Phi_{m+2}(p_1, \dots, p_{m+2}; q) \frac{1}{S_{m+2}}$$
$$\times |\mathcal{M}_{m+2}(p_1, \dots, p_{m+2})|^2 J_m^{(m+2)}(p_1, \dots, p_{m+2})$$

 \square d Φ_{m+2} : full m+2-parton phase space

- $I_m^{(m+2)}: \text{ ensures } m+2 \text{ partons} \to m \text{ jets}$

Up to two partons can be theoretically unresolved (soft and/or collinear)

Building blocks of subtraction terms: based on colour-ordered amplitudes

- products of two three-parton antenna functions
- single four-parton antenna function

Double Real Subtraction

Two colour-connected unresolved partons

 $d\sigma_{NNLO}^{S} = \mathcal{N} \sum_{m+2} \sum_{j} d\Phi_{m}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{L}, \dots, p_{m+2}; q) \cdot d\Phi_{X_{ijkl}}(p_{i}, p_{j}, p_{k}, p_{l}; \tilde{p}_{I} + \tilde{p}_{L})$ $\times X_{ijkl}^{0} |\mathcal{M}_{m}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{L}, \dots, p_{m+2})|^{2} J_{m}^{(m)}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{L}, \dots, p_{m+2})$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijkl}} X_{ijkl}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{4} |M_{ijkl}^{0}|^{2}$$

Four-particle inclusive phase space integrals are known

T. Gehrmann, G. Heinrich, AG

Colour-ordered antenna functions

Antenna functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \checkmark three-parton antenna \longrightarrow one unresolved parton
- four-parton antenna \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements

 - can be integrated analytically over the antenna phase spaces

 $e^+e^- \rightarrow 3$ jets at NNLO

Structure of $e^+e^- \rightarrow 3$ jets program:

EERAD3: T. Gehrmann, E.W.N. Glover, G. Heinrich, AG

