

- The Vincia Parton Shower Monte Carlo
- From Matrix Elements to Sudakov
- From Sudakov to Shower
- From Showers to Matrix Elements: Matching
- Vincia Status and Plans

Loops & Legs 2008 Sondershausen 11/27/07

The Vincia Shower Monte Carlo Matching is the driving principle behind VINCIA:

- A shower MC which can be added to a fixed order LO, NLO, NNLO calculation.
 - A shower MC which can easily "absorb" LO/NLO/NNLO matrix elements to further improve its predictive power of the fully exclusive final state
- Vincia fully embedded in PYTHIA 8

Sjöstrand, Mrenna, Skands, hep-ph/0710.3820.

- It replaces the parton shower part and matrix element generators inside PYTHIA.
- It uses the PYTHA non-perturbative framework
- It uses the PYTHIA interface (if you have PYTHIA up and running, VINCIA can be plugged in and can be used instantly).

From Matrix Elements to Sudakov "Experime

Calculating an observable in fixed order:

"Experimental" distribution of observable *O* in production of *X*:

Fixed Order
(all orders)
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\mathrm{ME}}$$
 $=\sum_{k=0} \int \mathrm{d}\Phi_{X+k} \left| \sum_{\ell=0} M_{X+k}^{(\ell)} \right|^2 \delta(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}))$ k: legs ℓ : loops $\{p\}$: momenta

 For a NLO parton level generator a subtraction formalism is used to cancel the soft/collinear divergences between virtual and real radiation

$$\frac{d\sigma}{dO}\Big|_{\text{NLO}} = \int d\Phi_X \left[\left| M_X^{(0)} \right|^2 + 2\text{Re} \left[M_X^{(0)} M_X^{(1)*} \right] + \left[\int \frac{d\Phi_{X+1}}{d\Phi_X} A \right] \times \left| \hat{M}_X^{(0)} \right|^2 \right] \delta(O - O(\{p\}_X)) + \int d\Phi_{X+1} \left[\left| M_{X+1}^{(0)} \right|^2 - A \left| M_X^{(0)} \right|^2 \right] \delta(O - O(\{p\}_{X+1})) + \cdots$$

From Matrix Elements to Sudakov

 The subtraction function contains the correct soft/collinear singular structure

$$\left|M_{X+1}^{(0)}\right|^2 \xrightarrow{\text{unresolved}} A \times \left|M_X^{(0)}\right|^2$$

Color ordered amplitude: dipole/antenna factorization

Kosower PRD57(1998)5410; Campbell,Cullen,Glover EPJC9(1999)245. (see also Gustafson, PLB175(1986)453; Lönnblad (ARIADNE), CPC71(1992)15. Azimov, Dokshitzer, Khoze, Troyan, PLB165B(1985)147.)

From Matrix Elements to

- The antenna functions have the expected strong ordering behavior which captures the leading logarithms
- As a result we can resum the antenna functions into a Sudakov factor which will form the basis for the shower
- It will also intertwine the NLO parton generator with the shower.

From Matrix Elements to Sudakov

The Sudakov function reflect the integrated probability the system does not change state between time t₁ and t₂ (t=1/Q_{resolution})

$$\Delta(t_n, t_{end}; \{p\}_n) = \exp\left(-\int_{t_n}^{t_{end}} dt_{n+1} \sum_{i \in \{n \to n+1\}} \int \frac{d\Phi_{n+1}^{[i]}}{d\Phi_n} \delta(t_{n+1} - t^{[i]}(\{p\}_{n+1}))A_i(\{p\}_n \to \{p\}_{n+1})\right)$$
Summed over all dipoles
$$s = s_{ab} = s_{arb}$$

$$y_E = 0.5$$

$$y_E$$

The Sudakov is the first step towards a shower

Fixed Order
$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} \right|_{\mathrm{ME}} = \sum_{k=0}^{K} \int \mathrm{d}\Phi_{X+k} \left| \sum_{\ell=0}^{L} M_{X+k}^{(\ell)} \right|^2 \delta(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}))$$

Matched Shower $\left. \frac{\mathrm{d}\sigma}{\mathrm{d}O} \right|_{\mathrm{matched}} = \sum_{k=0}^{K} \int \mathrm{d}\Phi_{X+k} \left| \sum_{l=0}^{L} w_{X+k}^{(l)} \right| \times S(\{p\}_{X+k}, O)$

- The unitary shower function, or evolution operator S, "evolves" the phase space point X→X+1 → ... →X+N as a function of resolution
- The matching condition defines the parton generators W (expanding the shower function in branchings and α_s *must* agree with the fixed order expansion)

Pure Shower
(all orders)
$$\frac{\mathrm{d}\sigma_X}{\mathrm{d}\mathcal{O}}\Big|_{\mathrm{PS}} = \int \mathrm{d}\Phi_X w_X S(\{p\}_X, \mathcal{O})$$

- Using the Sudakov Δ(t₁,t₂) we can define the evolution operator through a Markov Chain.
- Subsequently we can implement the Markov Chain in a numerical algorithm.

$$S(\{p\}_X, \mathcal{O}) = \underbrace{\delta\left(\mathcal{O} - \mathcal{O}(\{p\}_X)\right) \Delta(t_X, t_{\text{had}})}_{X + 0 \text{ exclusive above } 1/t_{\text{had}}} \qquad \qquad \text{``X + nothing'' ``X + something''} \\ + \underbrace{\int_{t_X}^{t_{\text{had}}} dt_{X+1} \sum_i \int \frac{\mathrm{d}\Phi_{X+1}^{[i]}}{\mathrm{d}\Phi_X} \delta(t_{X+1} - t^{[i]}(\{p\}_{X+1})) \Delta(t_X, t_{X+1}) A_i(\dots) S(\{p\}_{X+1}, \mathcal{O})}_{X + 1 \text{ inclusive above } 1/t_{\text{had}}}}$$

The final answer depends on

- The choice of evolution variable
- The dipole/antenna functions (finite/sub-leading terms not fixed)
- The phase space map ($d\Phi_{n+1}/d\Phi_n$)
- The renormalization scheme (argument of α_s)
- The infrared cutoff contour (Hadronization cutoff)
- Step 1: Quantify these uncertainty
 - Vary these within reasonable limits
- Step 2, Systematically reduce uncertainties

Understand the importance of each and how it is canceled by

- Matching to fixed order matrix elements, at LO, NLO, NNLO, ...
- Sub-leading logarithms, sub-leading color, etc.

• Starting point: "GGG" antenna functions, e.g., $gg \rightarrow ggg$:

- Can make shower systematically "softer" or "harder"
 We will see later how this variation is explicitly canceled by matching
 - quantification of uncertainty
 - quantification of improvement by matching

$A_{ggg} \sim$	$\frac{P_{gg}(z)}{y}; z = y_{ar}$	$+y_{rb};y^{-}$	$y^{1} = y^{-1}_{ar}$	$+ y_{rb}^{-1}$	$A(s_{c}$	(r, s_{rb})	$) = \frac{47}{2}$	$\frac{\pi \alpha_s(\mu)}{s_{ar}}$	$\frac{R}{b}N_{b}$	$\frac{C}{\alpha,\beta}$	$\sum_{\geq -1}$	$C_{\alpha\beta}^{-\frac{s}{2}}$	$rac{s^{lpha}_{ar}s^{eta}_{rb}}{s^{lpha+eta}_{arb}}$
	Frederix, Giele, Koso	ower, PS : L	es Houcl	nes 'NLM	', arxiv:08	303.0494							
		C_{-1-1}	C_{-10}	C_{0-1}	C_{-11}	C_{1-1}	C_{-12}	C_{2-1}	C_{00}	C_{10}	C_{01}		
	GGG											-	
	$q\bar{q} ightarrow qg\bar{q}$	2	-2	-2	1	1	0	0	0	0	0		
	$qg \rightarrow qgg$	2	-2	-2	1	1	0	-1	$\frac{5}{2}$	-1	$\frac{3}{2}$		
	gg ightarrow ggg	2	-2	-2	1	1	-1	-1	$\frac{8}{3}$	-1	-1		
	qg ightarrow q ar q' q'	0	0	$\frac{1}{2}$	0	-1	0	1	$-\frac{1}{2}$	1	0		
	$gg \to g \bar{q} q$	0	0	$\frac{1}{2}$	0	-1	0	1	-1	1	$\frac{1}{2}$		
	ARIADNE												
	$q\bar{q} ightarrow qg\bar{q}$	2	-2	-2	1	1	0	0	0	0	0		
	$qg \rightarrow qgg$	2	-2	-3	1	3	0	-1	0	0	0		
	gg ightarrow ggg	2	-3	-3	3	3	-1	-1	0	0	0		
	$qg ightarrow q \overline{q}' q'$	0	0	$\frac{1}{2}$	0	-1	0	1	-1	1	$\frac{1}{2}$		
	$gg ightarrow g \overline{q} q$	0	0	$\frac{1}{2}$	0	-1	0	1	-1	1	$\frac{1}{2}$		
	ARIADNE2 (reparametrization of ARIADNE functions à la GGG, for comparison)												
	q ar q o q g ar q	2	-2	-2	1	1	0	0	0	0	0		
	$qg \rightarrow qgg$	2	-2	-2	1	1	0	-1	-1	0	0		
	$gg \to ggg$	2	-2	-2	1	1	-1	-1	$-\frac{4}{3}$	-1	-1		

Table 1: Laurent coefficients for massless LL QCD antennae $(\hat{a}\hat{b} \rightarrow arb)$. The coefficients with at least one negative index are universal (apart from a reparametrization ambiguity for gluons). For "GGG" (the defaults in VINCIA), the finite terms

- The unknown finite terms are a major source of uncertainty
 - DGLAP has some, GGG have others, ARIADNE has yet others, etc...
 - They are arbitrary (and in general process-dependent \rightarrow don't tune!)

(huge variation with μ_{PS} from <u>pure</u> LL point of view, but NLL tells you using p_T at LL \rightarrow (N)LL.)

WG, Kosower, Skands : hep-ph/0707.3652

Subtracted matching is based on expanding out the Sudakov functions in the Markov chain (an expansion in virtuality)

$$S(\{p\}_X, \mathcal{O}) = \underbrace{\delta\left(\mathcal{O} - \mathcal{O}(\{p\}_X)\right) \Delta(t_X, t_{\text{had}})}_{X + 0 \text{ exclusive above } 1/t_{\text{had}}} \Delta(t) \rightarrow 1 - \frac{\alpha_s N_c}{2\pi} \int_t \frac{d\Phi_3}{d\Phi_2} A(\{p\}_2 \rightarrow \{p\}_3) + O(\alpha_s^2)$$
$$+ \underbrace{\int_{t_X}^{t_{\text{had}}} dt_{X+1} \sum_i \int \frac{d\Phi_{X+1}^{[i]}}{d\Phi_X} \delta(t_{X+1} - t^{[i]}(\{p\}_{X+1})) \Delta(t_X, t_{X+1}) A_i(\dots) S(\{p\}_{X+1}, \mathcal{O})}_{X + 1 \text{ inclusive above } 1/t_{\text{had}}}$$

The parton generators in this matched shower (including simultaneous treeand 1-loop matching for any number of legs) are determined by equating the expanded shower with the fixed order (known) matrix elements:

$$\frac{d\sigma}{d\mathcal{O}}\Big|_{MS} = \sum_{k=0}^{n} \int d\Phi_{X+k} \left(w_{X+k}^{(R)} + w_{X+k}^{(V)} \right) S(\{p\}_{X+k}, \mathcal{O})$$
$$= \sum_{k=0}^{n} \int d\Phi_{X+k} \Big| M_{X+k}^{(0)} + M_{X+k}^{(1)} \Big|^2 \delta(O - O(\{p\}_{X+k})) + \text{higher order + higher branchings}$$

The result of matching to a non-alculation shat the parton level generators of the shower are the antenna/dipole subtracted matrix elements:

$$w_X^{(V)} = 2\operatorname{Re}[M_X^{(0)}M_X^{*(1)}] + |M_X^{(0)}|^2 \sum_i \int_{\operatorname{all} t} \frac{\mathrm{d}\Phi_{X+1}^{[i]}}{\mathrm{d}\Phi_X} A_i(\dots) + \mathcal{O}(t_X/t_{\operatorname{had}})$$
$$w_{X+1}^{(R)} = |M_{X+1}^{(0)}|^2 - \sum_{i \in X \to X+1} A_i(\dots)|M_{X+0}^{(0)}(\{\hat{p}_i\}_{X+0})|^2$$
$$A(s_{ar}, s_{rb}) = \frac{4\pi\alpha_s(\mu_R)N_C}{s_{arb}} \sum_{\alpha,\beta \ge -1} C_{\alpha\beta} \frac{s_{ar}^{\alpha} s_{rb}^{\beta}}{s_{arb}^{\alpha+\beta}}$$

Given a NLO calculation using a subtraction scheme one can easily add the shower with the identical subtraction function in the Sudakov (i.e. matched).

$$\left. \frac{d\sigma}{dO} \right|_{\text{NLO Matched}} = \int d\Phi_X (w_X^{(R)} + w_X^{(V)}) \times S(\{p\}_X, O) + \int d\Phi_{X+1} w_{X+1}^{(R)} \times S(\{p\}_{X+1}, O)$$

- E.g. I want to make predictions for a 4 jet observable at LEP using the oneloop $Z \rightarrow 4$ parton and tree level $Z \rightarrow 5$ parton matrix elements.
- Fixed order parton level generator:

$$\frac{d\sigma}{dO}\Big|_{\rm NLO} = \int d\Phi_4 \left[\left| M_4^{(0)} \right|^2 + 2\operatorname{Re} \left[M_4^{(0)} M_4^{(1)*} \right] + \left(\int \frac{d\Phi_5}{d\Phi_4} A \right) \times \left| \hat{M}_4^{(0)} \right|^2 \right) \delta(O - O(\{p\}_4)) + \int d\Phi_5 \left(\left| M_5^{(0)} \right|^2 - A \left| M_4^{(0)} \right|^2 \right) \delta(O - O(\{p\}_5))$$

 I can now add the matched parton shower to get the showered and hadronized prediction of my observable:

$$\frac{d\sigma}{dO}\Big|_{\text{NLO Matched}} = \int d\Phi_4 \left(w_4^{(R)} + w_4^{(V)} \right) \times S(\{p\}_4, O) + \int d\Phi_5 w_5^{(R)} \times S(\{p\}_5, O)$$

Or:

- Calculate the NLO parton generator in a subtraction scheme
- Replace the delta functions with the shower operator
- Equate the antenna function used in the subtraction with the one used in Sudakov of the VINCA shower MC

From Showers to Matrix Elements

- This is how fixed order calculators would think of using a shower MC.
- However, the shower MC community is much more ambitious:
 - They view the shower as a fully exclusive simulation of real events (i.e. it should predict <u>any</u> observable).
 - Any known fixed order tree-level and one-loop amplitude should just be inserted into the shower MC to further enhance the predictive power.
 - An implementation through a subtraction scheme becomes difficult

$$\frac{d\sigma}{dO}\Big|_{\text{LO Matched}} = \sum_{k=2}^{K} \int d\Phi_{X+k} w_{x+k}^{(R)} \times S(\{p\}_{X+k}, O) \qquad \qquad w_{X+k}^{(R)} = \left|M_{X+k}^{(0)}\right|^2 - \sum_{i} A_i(\cdots) \left|M_{X+k+1}^{(0)}\right|^2$$

- We now suddenly have un-subtracted sub-leading logarithms all over. An additional regulator on these logarithms has to be introduced...
- Can we do better?

In general one wants a shower MC where we san insert any set of treelevel, one-loop,... calculated matrix elements

 Subtraction method problematic. One needs to "regulate" color suppressed logs, non-leading logs,...

 \Rightarrow Example: match the shower to Z \rightarrow 2,3,4 partons matrix elements at LO

- Some other method desirable \rightarrow re-weighed matching
- Veto branchings with probability $w_{\text{accept}} = \frac{|M_n|^2}{|M_{\text{terms}}|^2} = \frac{|M_n|^2}{A \times |M_{n-1}|^2} \text{ (with } A \times |M_r \text{ • This regulated the non-leading and color)}$
- This modifies the antenna function such that

$$w_n = |M_n|^2 - \hat{A} \times |M_{n-1}|^2 = 0$$
 for $n = 3, 4, .$

• The re-weighting matched shower is now simply

$$\frac{d\sigma}{dO} = \int d\Phi_2 w_2(Z \to q\overline{q}) \times S(\{p_1, p_2\}, O)$$

- Sjöstrand, Be • Exponentiates the whole Norrbin, S matrix element
 - suppressed logs by exponentiation
 - Can easily be extended for one-, two-,... loop matching
 - Unitary shower, so we maintain LO normalization

- The unknown finite terms are a major source of uncertainty
 - DGLAP has some, GGG have others, ARIADNE has yet others, etc...
 - They are arbitrary (and in general process-dependent)

Proper matching removes the ambiguity associated with the freedom of choosing the finite part of the antenna functions

Still with $\alpha_s(M_z)=0.137...$

From Showers to Matrix Elements

- This matching automatically exponentiates (and thus regulates) any sub-leading logs
- It is easily extendible to one-loop matrix elements
 - I.e. we can incorporate in the shower any mix of treelevel and one-loop matrix elements
- The cross section/total width is guaranteed to be normalized to the inclusive LO/NLO/... Z→parton cross section/width
- Because the antenna functions are known at one-loop we can start constructing a NLL shower with NNLO matched matrix elements.

Vincia status and plans

Up to now we build a time-like parton shower which

- Is highly customizable by design
- Keeps all uncertaities/choices explicit and changeable
- Can be used as an "add-on" to an existing NLO parton level MC
- Can be used as a "true" event generator and integrate tree-level and one-loop amplitudes to improve the predictions
- Is fully integrated within PYTHIA8
- Comparisons to LEP data are very promising
- We are working on
 - Massive particles in the shower
 - Extension to space-like showers (and TEVATRON/LHC phenomenology)
 - Started building in the NLO antenna functions as a first step towards a next-to-leading log shower (attacks scale choices)