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4-fermi theories in two dimensions are of interest due to connection with various areas

Gross-Neveu model is asymptotically free and multiplicatively renormalizable in two
dimensions

It possesses an exact S-matrix and exact mass gap and also underlies several problems in
condensed matter physics

For example, it is equivalent to the random bond Ising model at criticality, which requires
the renormalization group functions to a high loop order

Another model is the non-abelian Thirring model (NATM) which is asymptotically free
The structure of its renormalization group functions is an open question

Not clear whether the new Casimir d4°¢2d4><4 occurs at four loops similar to QCD
dabcd — lTr (TaT(bTCTd))
E 6
As a first step, aim is to compute mass anomalous dimensions at four loops in MS in the

Gross-Neveu model
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Bare two dimensional Lagrangian with SU (V') symmetry is
T4 e oy 1 74,04 \2
L = iy@dvy — movoyy + 590(¢0¢0)

Renormalization group functions are known in MS at various orders

2 3

v(g) = (2N — 1)89? - (N-1)(E2N -1) Hgiﬂg
4
+ (4N2 — 14N + 7)(2N — 1) 1298#1 + 0(¢%)
g g
Ym(g) = —@N-1)— + @N-1)>5
+ (4N — 3)(2N — 1)337?;3 + O(g")
g g’
Blg) = (d—2)g — (N—l)? + (N—l)ﬁ
L (N —1)2N —7) 157474 + O(g)
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~v(g) and v, (g) vanish for N = % which is free field theory
Four loop wave function computed in massless model, [Vyazovskii & Vasiliev]
Only two difficult graphs to evaluate, but calculation is infrared safe

For B-function and mass anomalous dimension a non-zero mass is needed to avoid
infrared singularities

For completeness the NATM Lagrangian is
L . 1 _. ,
L =i’ gy’ — mi'pt — —g($iy"Ty")?

To compute the Gross-Neveu mass anomalous dimension will use dimensional
regularization in d = 2 — e dimensions
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Mass anomalous dimension also requires m # 0 as snails are crucial

QO

Method is to compute 2-point function but with nullified external momenta

Hence require computation of massive vacuum bubbles to four loops relative to two
dimensions

To three loops basic topologies are known and easy to determine except for Benz which
does not arise for 2-point function

Cﬂ%ﬂm@@@@

Fermionic nature of model means lines are decorated with scalar products of internal
momenta
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Analogous problem in four dimensions is understood and encoded for example in MATAD

Evaluation of basic integrals in two dimensions is simpler given that lower dimension
produces integrals which are less divergent by power counting

Structure of expressions is similar

For example

' 1
A0) = &7 /kl (k2 — m2][i? — m?][(k — 1)? — m?]

is finite, where [, = [ %,and

9s9
A0) = = g2 T 00

where s2 = (21/3/9)Cl2(27/3) and Clz () is the Clausen function

Numerator reduction achieved via usual technigues

kl = %[1& + 12 — [(k—1)?*—m?] — m?]
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There are 1 one loop, 2 two loop, 7 three loop and 36 four loop graphs to be determined

At four loop there are 18 distinct topologies with 14 involving snails in one form or
another which are elementary to deduce

Difficult graphs are

) >
PAEES

Two main techniques to achieve tensor reduction

Four loop vacuum bubbles for two-dimensional four-fermi theory renormalization — p.7/17



First, where appropriate

x[w e <ﬂ )

This potentially introduces infrared infinities but can show overall everything is infrared
safe

Other is the application of Tarasov’s algorithm as encoded in the TARCER package

TARCER performs tensor reduction for the basic 2-loop self energy

<>

This allows for all problem scalar products in numerator of difficult graphs to be written
in terms of master scalar integrals
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Tensor reduction produces integrals like ¢ [, (k2)%J°(k?)

Evaluate by either integration by parts or differentiation with respect to the mass

7d — 13)m?21
i | (K*)2J3(k%) = 2I4+( z’/J2k2
[ 6225% k) el RRCD
1 —
L 2(d-1)(d 3)m4i/J3(k2)
(2d —5)(d — 2) K
WhereI: ’Lfk m and J(p2) :’Lfk [k2—m2][(l~1—p)2—m2] W|th

It — 2= d4/2) (4m2—p2)d/2‘2 . (2 d13 7 )
P =" Tamarn 1 21 22727 p2 — 4m?

Introduces pole in two dimensions from d-dimensional dependence but this multiplies a
finite integral (see later)
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Standard renormalization produces the final MS divergence for the 2-point function at
four loops as

32 2 T 128 256

+ - —+

192 64 48 1536

5N3 3N2? 5N 49 N3 N2 41N 27 gt
_C(S) 7T46

Remaining part of divergence structure consistent with renormalization group
expectations and large IV critical exponents at O(1/N?)

Clearly non-vanishing when N = % but calculation is correct

Resolution is that Gross-Neveu model is renormalizable in two dimensions but when
dimensionally regularized it ceases to be multiplicatively renormalizable

Additional evanescent operator O3 generated at three loops in 4-point function
renormalization with associated renormalization constant Z33 where

1 i i T i
On = §¢ F,(J:,i) H Yy F(n) ul...,u,nzp

and D32 Hn = — ~ylrryp2 | ~knl s the -matrix basis in d-dimensions
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Re-evaluate 4-point function renormalization at three loops as there are two different
values for Z33 and the associated 3-function 83(g)

One was determined in massless model with two momenta nullified:; other was in massive
model

Both assumed the following graph was finite

In massive model the tensor reduction gives the following contribution in the
I3y ® I'(3) channel

(d-2)*

Cannot be evaluated by integration by parts; massive Benz integral is finite in two
dimensions
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Relate to massive tetrahedron vacuum bubble of Broadhurst via Tarasov’s d — (d + 2)
formalism as encoded in TARCER for two loop self energy

Produces relation for Benz topology

Be(1,1,1,1,1,1,m?, m?, m?, m?, m?, m?, d)

2(1.2
= _ 14i/J2(k2)— 322'/ ‘;(ké
12m#4  Jg 4m? Ji [k? — m?]

L md(d—1)(d~2)

mb

[Be(1,1,1,1,1,1,m?, m? m? m? m?, m?,d + 2)

—Be(1,1,1,1,1,1,m?, m?, m? m? m?,0,d + 2)]

The two dimensional integrals are finite and can be evaluated in two dimensions directly
using properties of hypergeometric function

12002 (C) [ T2 (k) _11¢(3)
Z/k‘] ( )d:2 643 m2 Z/k (k2 —m?2]|,_,  57673m?
and
: 3,72 o 3C(3)
Z/kJ (k%) g—o  256mim4
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To order in € we are interested in, the massive three loop tetrahedronind =2 — ¢

dimensions is
Be(1,1,1,1,1,1,m?, m?,m?,m?,m?,m?,d) = — B + O(e)
19273 mb
Consequently
B3(g) = {%(43) - %} i—z + O(g")

which differs from previous two expressions
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Upshot is that the following graph has to be included in the renormalization of the 2-point
function

This produces the (intermediate) mass anomalous dimension

2 g3
AN — 3)(2N —1
+ (4N 3N - 1)L

~ g g
m = —(2N-—-1)— 2N —1)—

+ [(48N3 — 384N? + 492N — 138)¢(3)
g4

— 40N?3 — 72N? + 160N — 81] + 0(g°)

38474

Again agrees with O(1/N?2) critical exponent calculation but these do not check O(N)
terms of anomalous dimension

Still non-zero at N = %
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Explicitly

g4

cad T O(g®)

m(9)| | = 13¢(3) 4]
N=

V]

True anomalous dimension, v, (g), emerges via Rossi et al’s projection technique

Ym(9) = Am(g) + > pin) (9)Br(9)
k=3

where k ranges over evanescent operators only

Projection formula is

/ d%z N[Oy]

=0 = / d%z (p™ (N igdy — miy + 2900

d=2

— ol (9) Nmipy] + C® (g)N[Oo])

Inserted into a 2 or 4-point function in d-dimensions and then renormalized; projection
functions essentially defined by the finite parts
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For four loops the projection term has been deduced
g
pm(g) = == + O(g")

Final mass anomalous dimension in two dimensions is

2 g3

3273
(2N - 1)g*
3844

ym(g) = —@N-1)2- + 2N -1)25 + (4N —3)(2N — 1)

2T 82

+ [12(2N — 13)(N — 1)¢(3) — 20N? — 46N + 57]

+ 0(g°)

Vanishes at N = %
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Consistent value for the four loop MS mass anomalous dimension in the Gross-Neveu
model

Resolves discrepancy in previous computations of evanescent operator coupling constant
renormalization

Opens up the possibility of computing mass dimension in non-abelian Thirring model to
examine Casimir structure

Useful interplay of vacuum bubble integrals in different dimensions
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