NLO CORRECTIONS WITH THE OPP METHOD

Costas G. Papadopoulos

NCSR "Demokritos", Athens

Loops and Legs 2008, Sonderhausen, 20-25 April 2008

OUTLINE

- **1** Introduction: Wishlists and Troubles
- **OPP** REDUCTION
 - Rational terms
- 3 Numerical Tests
 - 4-photon amplitudes
 - 6-photon amplitudes
 - VVV production

INTRODUCTION: LHC NEEDS NLO

• The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)

Introduction: LHC needs NLO

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms

Introduction: LHC needs NLO

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)

Introduction: LHC needs NLO

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)
- As a result, a big effort has been devoted by several groups to the problem of an efficient computation of one-loop corrections for multi-particle processes!

NLO WISHLIST LES HOUCHES

[from G. Heinrich's Summary talk]

Wishlist Les Houches 2007

- 1. $pp \rightarrow V V + \text{jet}$ 2. $pp \rightarrow t\bar{t} b\bar{b}$ 3. $pp \rightarrow t\bar{t} + 2 \text{ jets}$ 4. $pp \rightarrow W W W$ 5. $pp \rightarrow V V b\bar{b}$ 6. $pp \rightarrow V V + 2 \text{ jets}$ 7. $pp \rightarrow V + 3 \text{ jets}$ 8. $pp \rightarrow t\bar{t} b\bar{b}$ 9. $pp \rightarrow 4 \text{ jets}$

Processes for which a NLO calculation is both desired and feasible

Will we "finish" in time for LHC?

What has been done? (2005-2007)

Some recent results → Cross Sections available

- ullet $pp
 ightarrow ZZZpp
 ightarrow t\overline{t}Z$ [Lazopoulos, Melnikov, Petriello]
- $pp \rightarrow H + 2$ jets [Campbell, et al., J. R. Andersen, et al.]
- $pp \rightarrow VV + 2$ jets via VBF [Bozzi, Jäger, Oleari, Zeppenfeld]
- $pp \rightarrow VV + 1$ jet [S. Dittmaier, S. Kallweit and P. Uwer]
- ullet $pp
 ightarrow t ar{t} + 1$ jet [S. Dittmaier, P. Uwer and S. Weinzierl]

Mostly $2 \rightarrow 3$, very few $2 \rightarrow 4$ complete calculations.

- $e^+ e^- \rightarrow 4$ fermions [Denner, Dittmaier, Roth]
- $e^+ e^- \rightarrow H H \nu \bar{\nu}$ [GRACE group (Boudjema et al.)]

This is NOT a complete list

(A lot of work has been done at NLO \rightarrow calculations & new methods)

NLO TROUBLES

Problems arising in NLO calculations

- Large Number of Feynman diagrams
- Reduction to Scalar Integrals (or sets of known integrals)
- Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities)
- Extraction of soft and collinear singularities (we need virtual and real corrections)

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
 - general applicability major achievements
 - but major problem: not designed @ amplitude level

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
 - Ellis, Giele, Glover, Zanderighi;
 - Binoth, Guillet, Heinrich, Schubert;
 - Denner, Dittmaier; Del Aguila, Pittau;
 - Ferroglia, Passera, Passarino, Uccirati;
 - Nagy, Soper; van Hameren, Vollinga, Weinzierl;

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
- Analytic Approach (Twistor-inspired)
 - ightarrow extract information from lower-loop, lower-point amplitudes
 - ightarrow determine scattering amplitudes by their poles and cuts
 - * major advantage: designed to work @ amplitude level
 - * quadruple and triple cuts major simplifications
 - Bern, Dixon, Dunbar, Kosower, Berger, Forde;
 - Anastasiou, Britto, Cachazo, Feng, Kunszt, Mastrolia;

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
- Analytic Approach (Twistor-inspired)
 - ightarrow extract information from lower-loop, lower-point amplitudes
 - → determine scattering amplitudes by their poles and cuts
- ★ OPP Integrand-level reduction combine: reduction@integrand + n-particle cuts

OPP REDUCTION - INTRO

G. Ossola., C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007) - arXiv:hep-ph/0609007

and JHEP 0707 (2007) 085 - arXiv:0704.1271 [hep-ph]

R. K. Ellis, W. T. Giele and Z. Kunszt, JHEP 0803, 003 (2008)

Any m-point one-loop amplitude can be written, before integration, as

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

A bar denotes objects living in $n = 4 + \epsilon$ dimensions

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2$$
$$\bar{q}^2 = q^2 + \tilde{q}^2$$
$$\bar{D}_i = D_i + \tilde{q}^2$$

External momenta p_i are 4-dimensional objects

THE OLD "MASTER" FORMULA

$$\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)
+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2)
+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1)
+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0)
+ rational terms$$

OPP "MASTER" FORMULA - I

General expression for the 4-dim N(q) at the integrand level in terms of D_i

$$N(q) = \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3}) + \tilde{d}(q; i_{0}i_{1}i_{2}i_{3}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2}) + \tilde{c}(q; i_{0}i_{1}i_{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1}) + \tilde{b}(q; i_{0}i_{1}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}$$

$$+ \sum_{i_{0}}^{m-1} \left[a(i_{0}) + \tilde{a}(q; i_{0}) \right] \prod_{i \neq i_{0}}^{m-1} D_{i}$$

OPP "MASTER" FORMULA - II

- The quantities $d(i_0i_1i_2i_3)$ are the coefficients of 4-point functions with denominators labeled by i_0 , i_1 , i_2 , and i_3 .
- $c(i_0i_1i_2)$, $b(i_0i_1)$, $a(i_0)$ are the coefficients of all possible 3-point, 2-point and 1-point functions, respectively.

OPP "MASTER" FORMULA - II

$$\begin{split} \mathcal{N}(q) & = & \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ & + & \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{aligned}$$

The quantities \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} are the "spurious" terms

- They still depend on q (integration momentum)
- They should vanish upon integration

What is the explicit expression of the spurious term?

Spurious Terms - I

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

• Express any q in N(q) as

$$q^{\mu} = -p_0^{\mu} + \sum_{i=1}^4 \, G_i \, \ell_i^{\mu} \; , \; \ell_i{}^2 = 0$$

$$k_1 = \ell_1 + \alpha_1 \ell_2$$
, $k_2 = \ell_2 + \alpha_2 \ell_1$, $k_i = p_i - p_0$
 $\ell_3^{\mu} = <\ell_1 |\gamma^{\mu}| \ell_2]$, $\ell_4^{\mu} = <\ell_2 |\gamma^{\mu}| \ell_1]$

• The coefficients G_i either reconstruct denominators D_i

 \rightarrow They give rise to d, c, b, a coefficients

Spurious Terms - I

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

• Express any q in N(q) as

$$q^{\mu} = -p_0^{\mu} + \sum_{i=1}^4 \, G_i \, \ell_i^{\mu} \; , \; \ell_i{}^2 = 0$$

$$k_1 = \ell_1 + \alpha_1 \ell_2$$
, $k_2 = \ell_2 + \alpha_2 \ell_1$, $k_i = p_i - p_0$
 $\ell_3^{\mu} = <\ell_1 |\gamma^{\mu}| \ell_2$, $\ell_4^{\mu} = <\ell_2 |\gamma^{\mu}| \ell_1$

- The coefficients G_i either reconstruct denominators D_i or vanish upon integration
 - \rightarrow They give rise to d, c, b, a coefficients
 - \rightarrow They form the spurious \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} coefficients

Spurious Terms - II

• $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \not l_1 \not l_2 \not k_3 \gamma_5]$$

Spurious Terms - II

• $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \not \ell_1 \not \ell_2 \not k_3 \gamma_5]$$

• $\tilde{c}(q)$ terms (they are 6)

$$\tilde{c}(q) = \sum_{j=1}^{J_{max}} \left\{ \tilde{c}_{1j} [(q+p_0) \cdot \ell_3]^j + \tilde{c}_{2j} [(q+p_0) \cdot \ell_4]^j \right\}$$

In the renormalizable gauge, $j_{max} = 3$

Spurious Terms - II

• $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \not \ell_1 \not \ell_2 \not k_3 \gamma_5]$$

• $\tilde{c}(q)$ terms (they are 6)

$$\tilde{c}(q) = \sum_{j=1}^{J_{max}} \left\{ \tilde{c}_{1j} [(q+p_0) \cdot \ell_3]^j + \tilde{c}_{2j} [(q+p_0) \cdot \ell_4]^j \right\}$$

In the renormalizable gauge, $j_{max} = 3$

• $\tilde{b}(q)$ and $\tilde{a}(q)$ give rise to 8 and 4 terms, respectively

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int rac{1}{D_0 D_1 D_2 D_3 D_4} \ 1 = \sum \left[d(i_0 i_1 i_2 i_3) + ilde{d}(q; i_0 i_1 i_2 i_3)
ight] D_{i_4} \ \int rac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + ilde{d}(q; i_0 i_1 i_2 i_3)
ight] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\frac{1}{D_{i_4}(q^+)} + \frac{1}{D_{i_4}(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\frac{1}{D_{i_4}(q^+)} + \frac{1}{D_{i_4}(q^-)} \right)$$

- Melrose, Nuovo Cim. 40 (1965) 181
- G. Källén, J.Toll, J. Math. Phys. 6, 299 (1965)

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4. \tag{6}$$

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4 . \tag{6}$$

which yields the final formula for the scalar one-loop five-point function:

$$E_{01234}(w^2-4\Delta_4m_0^2)=D_{1234}\left[2\Delta_4-w\cdot(v_1+v_2+v_3+v_4)\right]$$

$$+D_{0234}v_1\cdot w + D_{0134}v_2\cdot w + D_{0124}v_3\cdot w + D_{0123}v_4\cdot w. \tag{19}$$

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4 . \tag{6}$$

which yields the final formula for the scalar one-loop five-point function:

$$E_{01234}(w^2 - 4\Delta_4 m_0^2) = D_{1234}[2\Delta_4 - w \cdot (v_1 + v_2 + v_3 + v_4)]$$

$$+ D_{0234}v_1 \cdot w + D_{0134}v_2 \cdot w + D_{0124}v_3 \cdot w + D_{0123}v_4 \cdot w .$$
(19)

This method is completely different from the one used in ref. [3].

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4. \tag{6}$$

which yields the final formula for the scalar one-loop five-point function:

$$E_{01234}(w^2 - 4\Delta_4 m_0^2) = D_{1234}[2\Delta_4 - w \cdot (v_1 + v_2 + v_3 + v_4)]$$

+ $D_{0234}v_1 \cdot w + D_{0134}v_2 \cdot w + D_{0124}v_3 \cdot w + D_{0123}v_4 \cdot w$. (19)

This method is completely different from the one used in ref. [3].

References

- [1] G. 't Hooft and M. Veltman, Nucl. Phys. B153 (1979) 365.
- [2] J.A.M. Vermaseren, Nucl. Phys. B229 (1983) 347.
- [3] G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151.

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} \mathcal{N}(q) & = & \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ & + & \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Our calculation is now reduced to an algebraic problem

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} N(q) & = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ & + \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} \mathcal{N}(q) & = & \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ & + & \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{aligned}$$

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q

There is a very good set of such points: Use values of q for which a set of denominators D_i vanish \rightarrow The system becomes "triangular": solve first for 4-point functions, then 3-point functions and so on

$$N(q) = d + \tilde{d}(q) + \sum_{i=0}^{3} [c(i) + \tilde{c}(q; i)] D_i + \sum_{i_0 < i_1}^{3} [b(i_0 i_1) + \tilde{b}(q; i_0 i_1)] D_{i_0} D_{i_1}$$

$$+ \sum_{i_0=0}^{3} [a(i_0) + \tilde{a}(q; i_0)] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0}$$

We look for a q of the form $q^\mu = -p_0^\mu + x_i \ell_i^\mu$ such that

$$D_0 = D_1 = D_2 = D_3 = 0$$

 \rightarrow we get a system of equations in x_i that has two solutions q_0^{\pm}

$$N(q) = d + \tilde{d}(q)$$

Our "master formula" for $q = q_0^{\pm}$ is:

$$N(q_0^{\pm}) = [d + \tilde{d} T(q_0^{\pm})]$$

 \rightarrow solve to extract the coefficients **d** and \tilde{d}

$$N(q) - d - \tilde{d}(q) = \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q; i) \right] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1}$$

$$+ \sum_{i_0=0}^{3} \left[a(i_0) + \tilde{a}(q; i_0) \right] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0}$$

Then we can move to the extraction of c coefficients using

$$N'(q) = N(q) - d - \tilde{d}T(q)$$

and setting to zero three denominators (ex: $D_1 = 0$, $D_2 = 0$, $D_3 = 0$)

$$N(q) - d - \tilde{d}(q) = \left[c(0) + \tilde{c}(q; 0)\right] D_0$$

We have infinite values of q for which

$$D_1 = D_2 = D_3 = 0$$
 and $D_0 \neq 0$

 \rightarrow Here we need 7 of them to determine c(0) and $\tilde{c}(q;0)$

Let's go back to the integrand

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

• Insert the expression for $N(q) \rightarrow$ we know all the coefficients

$$N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d + \tilde{d}(q) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c + \tilde{c}(q) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i + \cdots$$

Finally rewrite all denominators using

$$rac{D_i}{ar{D}_i} = ar{Z}_i \,, \quad ext{with} \quad ar{Z}_i \equiv \left(1 - rac{ ilde{q}^2}{ar{D}_i}
ight)$$

$$A(\bar{q}) = \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \frac{d(i_{0}i_{1}i_{2}i_{3}) + \tilde{d}(q; i_{0}i_{1}i_{2}i_{3})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}\bar{D}_{i_{2}}\bar{D}_{i_{3}}} \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{Z}_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \frac{c(i_{0}i_{1}i_{2}) + \tilde{c}(q; i_{0}i_{1}i_{2})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}\bar{D}_{i_{2}}} \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{Z}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \frac{b(i_{0}i_{1}) + \tilde{b}(q; i_{0}i_{1})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}} \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{Z}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \frac{a(i_{0}) + \tilde{a}(q; i_{0})}{\bar{D}_{i_{0}}} \prod_{i \neq i_{0}}^{m-1} \bar{Z}_{i}$$

The rational part is produced, after integrating over d^nq , by the \tilde{q}^2 dependence in \bar{Z}_i

$$ar{Z}_i \equiv \left(1 - rac{ ilde{q}^2}{ar{D}_i}
ight)$$

The "Extra Integrals" are of the form

$$I_{s;\mu_1\cdots\mu_r}^{(n;2\ell)} \equiv \int d^n q \, \tilde{q}^{2\ell} \frac{q_{\mu_1}\cdots q_{\mu_r}}{\bar{D}(k_0)\cdots\bar{D}(k_s)} \,,$$

where

$$\bar{D}(k_i) \equiv (\bar{q} + k_i)^2 - m_i^2, k_i = p_i - p_0$$

These integrals:

- have dimensionality $\mathcal{D} = 2(1 + \ell s) + r$
- contribute only when $\mathcal{D} \geq 0$, otherwise are of $\mathcal{O}(\epsilon)$

Expand in D-dimensions?

$$\bar{D}_i = D_i + \tilde{q}^2$$

Expand in D-dimensions?

$$\begin{split} N(q) &= \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3}; \tilde{q}^{2}) + \tilde{d}(q; i_{0}i_{1}i_{2}i_{3}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D}_{i} \\ &+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2}; \tilde{q}^{2}) + \tilde{c}(q; i_{0}i_{1}i_{2}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{D}_{i} \\ &+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1}; \tilde{q}^{2}) + \tilde{b}(q; i_{0}i_{1}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i} \\ &+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0}; \tilde{q}^{2}) + \tilde{a}(q; i_{0}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}}^{m-1} \bar{D}_{i} + \tilde{P}(q) \prod_{i}^{m-1} \bar{D}_{i} \end{split}$$

Expand in D-dimensions?

$$\begin{split} \mathcal{N}(q) &= \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3}; \tilde{q}^{2}) + \tilde{d}(q; i_{0}i_{1}i_{2}i_{3}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D} \\ &+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2}; \tilde{q}^{2}) + \tilde{c}(q; i_{0}i_{1}i_{2}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{D}_{i} \\ &+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1}; \tilde{q}^{2}) + \tilde{b}(q; i_{0}i_{1}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i} \\ &+ \sum_{i_{0}}^{m-1} \left[a(i_{0}; \tilde{q}^{2}) + \tilde{a}(q; i_{0}; \tilde{q}^{2}) \right] \prod_{i \neq i_{0}}^{m-1} \bar{D}_{i} + \tilde{P}(q) \prod_{i}^{m-1} \bar{D}_{i} \\ &+ m_{i}^{2} \rightarrow m_{i}^{2} - \tilde{q}^{2} \end{split}$$

Polynomial dependence on \tilde{q}^2

$$b(ij; \tilde{q}^2) = b(ij) + \tilde{q}^2 b^{(2)}(ij), \quad c(ijk; \tilde{q}^2) = c(ijk) + \tilde{q}^2 c^{(2)}(ijk).$$

Polynomial dependence on \tilde{q}^2

$$b(ij; \tilde{q}^2) = b(ij) + \tilde{q}^2 b^{(2)}(ij), \quad c(ijk; \tilde{q}^2) = c(ijk) + \tilde{q}^2 c^{(2)}(ijk).$$

$$\begin{split} &\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j} &= & -\frac{i \pi^2}{2} \left[m_i^2 + m_j^2 - \frac{(p_i - p_j)^2}{3} \right] + \mathcal{O}(\epsilon) \,, \\ &\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j \bar{D}_k} &= & -\frac{i \pi^2}{2} + \mathcal{O}(\epsilon) \,, \quad \int d^n \bar{q} \frac{\tilde{q}^4}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} &= & -\frac{i \pi^2}{6} + \mathcal{O}(\epsilon) \,. \end{split}$$

Furthermore, by defining

$$\mathcal{D}^{(m)}(q,\tilde{q}^2) \equiv \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i ,$$

the following expansion holds

$$\mathcal{D}^{(m)}(q, \tilde{q}^2) = \sum_{j=2}^m \tilde{q}^{(2j-4)} d^{(2j-4)}(q),$$

where the last coefficient is independent on q

$$d^{(2m-4)}(q) = d^{(2m-4)}$$
.

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \tilde{q}^2 , in order to determine $b^{(2)}(ij)$, $c^{(2)}(ijk)$ and $d^{(2m-4)}$.

$$R_{1} = -\frac{i}{96\pi^{2}}d^{(2m-4)} - \frac{i}{32\pi^{2}}\sum_{i_{0}< i_{1}< i_{2}}^{m-1}c^{(2)}(i_{0}i_{1}i_{2})$$

$$- \frac{i}{32\pi^{2}}\sum_{i_{0}< i_{1}}^{m-1}b^{(2)}(i_{0}i_{1})\left(m_{i_{0}}^{2} + m_{i_{1}}^{2} - \frac{(p_{i_{0}} - p_{i_{1}})^{2}}{3}\right).$$

G. Ossola, C. G. Papadopoulos and R. Pittau, arXiv:0802.1876 [hep-ph]

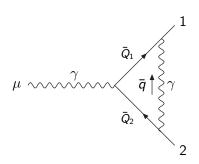
A different source of Rational Terms, called R_2 , can also be generated from the ϵ -dimensional part of N(q)

$$ar{N}(ar{q}) = N(q) + ilde{N}(ilde{q}^2, \epsilon; q)$$

$$R_2 \equiv \frac{1}{(2\pi)^4} \int d^n \, \bar{q} \frac{\tilde{N}(\tilde{q}^2, \epsilon; q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \equiv \frac{1}{(2\pi)^4} \int d^n \, \bar{q} \, \mathcal{R}_2$$

$$egin{array}{lll} ar{q} &=& q+ ilde{q}\,, \ ar{\gamma}_{ar{\mu}} &=& \gamma_{\mu}+ ilde{\gamma}_{ar{\mu}}\,, \ ar{g}^{ar{\mu}ar{
u}} &=& g^{\mu
u}+ ilde{g}^{ ilde{\mu} ilde{
u}}\,. \end{array}$$

New vertices/particles or GKM-approach



$$egin{aligned} ar{Q}_1 &= ar{q} + p_1 = Q_1 + ar{q} \\ ar{Q}_2 &= ar{q} + p_2 = Q_2 + ar{q} \\ ar{D}_0 &= ar{q}^2 \\ ar{D}_1 &= (ar{q} + p_1)^2 \\ ar{D}_2 &= (ar{q} + p_2)^2 \end{aligned}$$

$$\begin{split} \bar{N}(\bar{q}) & \equiv e^3 \left\{ \bar{\gamma}_{\bar{\beta}} \left(\bar{Q}_1 + m_e \right) \gamma_{\mu} \left(\bar{Q}_2 + m_e \right) \bar{\gamma}^{\bar{\beta}} \right\} \\ & = e^3 \left\{ \gamma_{\beta} (Q_1 + m_e) \gamma_{\mu} (Q_2 + m_e) \gamma^{\beta} \right. \\ & - \epsilon (Q_1 - m_e) \gamma_{\mu} (Q_2 - m_e) + \epsilon \tilde{q}^2 \gamma_{\mu} - \tilde{q}^2 \gamma_{\beta} \gamma_{\mu} \gamma^{\beta} \right\} \,, \end{split}$$

$$\begin{split} &\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_0 \bar{D}_1 \bar{D}_2} &= & -\frac{i\pi^2}{2} + \mathcal{O}(\epsilon) \,, \\ &\int d^n \bar{q} \frac{q_\mu q_\nu}{\bar{D}_0 \bar{D}_1 \bar{D}_2} &= & -\frac{i\pi^2}{2\epsilon} g_{\mu\nu} + \mathcal{O}(1) \,, \end{split}$$

$$\mathrm{R}_2 = -rac{ie^3}{8\pi^2}\gamma_\mu + \mathcal{O}(\epsilon)\,,$$

Rational counterterms

$$\mu \stackrel{p}{\longleftarrow} = -\frac{ie^2}{8\pi^2} g_{\mu\nu} \left(2m_e^2 - p^2/3\right)$$

$$\stackrel{p}{\longleftarrow} = \frac{ie^2}{16\pi^2} \left(-p + 2m_e\right)$$

$$\mu \stackrel{\nu}{\longleftarrow} = \frac{ie^4}{12\pi^2} \left(g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho}\right)$$

Calculate N(q)

Calculate N(q)

• We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- ullet Calculate N(q) numerically via recursion relations

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- ullet Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

 \bullet by evaluating N(q) at certain values of integration momentum

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- ullet Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

ullet by evaluating N(q) at certain values of integration momentum

Evaluate scalar integrals

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- ullet Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

ullet by evaluating N(q) at certain values of integration momentum

Evaluate scalar integrals

- massive integrals → FF [G. J. van Oldenborgh]
- massless+massive integrals → OneLOop [A. van Hameren]

PV:

• Unitarity Methods:

- PV:
 - N(q) or A(q) hasn't to be known analytically

Unitarity Methods:

- PV:
 - N(q) or A(q) hasn't to be known analytically
 - No computer algebra
- Unitarity Methods:

- PV:
 - N(q) or A(q) hasn't to be known analytically
 - No computer algebra
 - Mathematica → Numerica
- Unitarity Methods:

- PV:
 - N(q) or A(q) hasn't to be known analytically
 - No computer algebra
 - Mathematica → Numerica
- Unitarity Methods:
 - A more transparent algebraic method

- PV:
 - N(q) or A(q) hasn't to be known analytically
 - No computer algebra
 - Mathematica → Numerica
- Unitarity Methods:
 - A more transparent algebraic method
 - A solid way to get all rational terms

- PV:
 - N(q) or A(q) hasn't to be known analytically
 - No computer algebra
 - Mathematica → Numerica
- Unitarity Methods:
 - A more transparent algebraic method
 - A solid way to get all rational terms

Cuttools

G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0803, 042 (2008) [arXiv:0711.3596 [hep-ph]]

THE MASTER EQUATION

Properties of the master equation

THE MASTER EQUATION

Properties of the master equation

Polynomial equation in q

Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of m^2-2 compared to m as a function of q

Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of m^2-2 compared to m as a function of q
- Zeros of (a tower of) polynomial equations

Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of m^2-2 compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides 'unitarity method'

Properties of the master equation

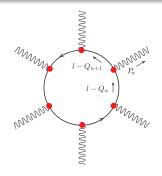
- Polynomial equation in q
- Highly redundant: the a-terms have a degree of m^2-2 compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides 'unitarity method'

The $N \equiv N$ test

A tool to efficiently treat phase-space points with numerical instabilities

4-PHOTON AND 6-PHOTON AMPLITUDES

As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)

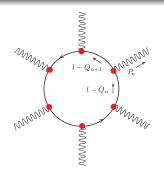


Input parameters for the reduction:

- External momenta p_i
- Masses of propagators in the loop
- Polarization vectors

4-PHOTON AND 6-PHOTON AMPLITUDES

As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)



Input parameters for the reduction:

- External momenta $p_i \rightarrow$ in this example massless, i.e. $p_i^2 = 0$
- ullet Masses of propagators in the loop ightarrow all equal to m_f
- Polarization vectors → various helicity configurations

$$\frac{F_{++++}^f}{\alpha^2 Q_f^4} = -8$$

Rational Part

$$\frac{F_{++++}^{f}}{\alpha^{2}Q_{f}^{4}} = -8 + 8\left(1 + \frac{2\hat{u}}{\hat{s}}\right)B_{0}(\hat{u}) + 8\left(1 + \frac{2\hat{t}}{\hat{s}}\right)B_{0}(\hat{t})
- 8\left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}\right) \left[\hat{t}C_{0}(\hat{t}) + \hat{u}C_{0}(\hat{u})\right]
- 4\left[\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}\right]D_{0}(\hat{t}, \hat{u})$$

Massless four-photon amplitudes

$$\begin{split} \frac{F_{++++}^f}{\alpha^2 Q_f^4} &= -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}} \right) B_0(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}} \right) B_0(\hat{t}) \\ &- 8 \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \frac{4m_f^2}{\hat{s}} \right) [\hat{t} C_0(\hat{t}) + \hat{u} C_0(\hat{u})] \\ &- 4 \left[4m_f^4 - (2\hat{s}m_f^2 + \hat{t}\hat{u}) \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} + \frac{4m_f^2 \hat{t}\hat{u}}{\hat{s}} \right] D_0(\hat{t}, \hat{u}) \\ &+ 8m_f^2 (\hat{s} - 2m_f^2) [D_0(\hat{s}, \hat{t}) + D_0(\hat{s}, \hat{u})] \end{split}$$

Massive four-photon amplitudes

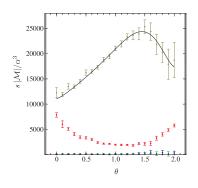
$$\begin{split} \frac{F_{++++}^f}{\alpha^2 Q_f^4} &= -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}} \right) B_0(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}} \right) B_0(\hat{t}) \\ &- 8 \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \frac{4m_f^2}{\hat{s}} \right) \left[\hat{t} C_0(\hat{t}) + \hat{u} C_0(\hat{u}) \right] \\ &- 4 \left[4m_f^4 - (2\hat{s}m_f^2 + \hat{t}\hat{u}) \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} + \frac{4m_f^2 \hat{t}\hat{u}}{\hat{s}} \right] D_0(\hat{t}, \hat{u}) \\ &+ 8m_f^2 (\hat{s} - 2m_f^2) [D_0(\hat{s}, \hat{t}) + D_0(\hat{s}, \hat{u})] \end{split}$$

Massive four-photon amplitudes

Results also checked for F_{+++-}^f and F_{++--}^f

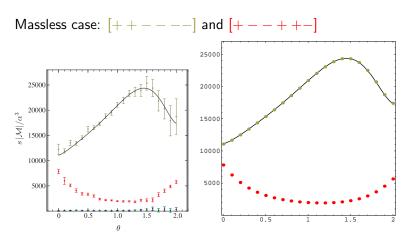
SIX PHOTONS - COMPARISON WITH Nagy-Soper and Mahlon

Massless case: [++---] and [+--++-]

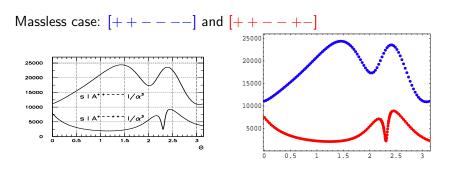


Plot presented by Nagy and Soper hep-ph/0610028 (also Binoth et al., hep-ph/0703311)

SIX PHOTONS – COMPARISON WITH Nagy-Soper and Mahlon

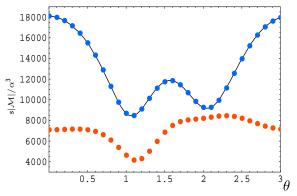


Analogous plot produced with OPP reduction

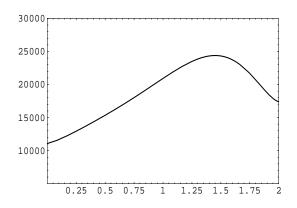


Same plot as before for a wider range of θ

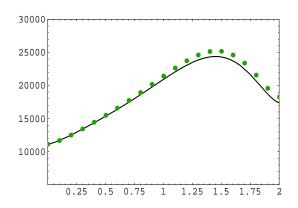
SIX PHOTONS - COMPARISON WITH Mahlon



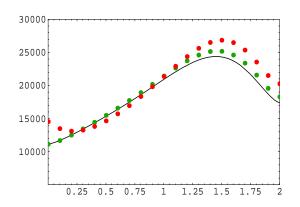
Same idea for a different set of external momenta



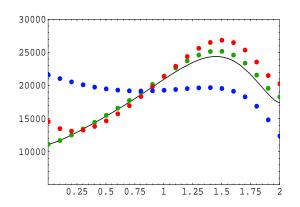
Massless result [Mahlon]



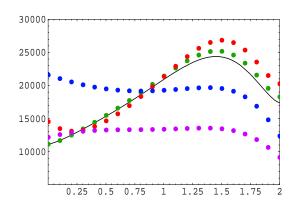
- Massless result [Mahlon]
- m = 0.5 GeV



- Massless result [Mahlon]
- m = 0.5 GeV
- m = 4.5 GeV



- Massless result [Mahlon]
- m = 0.5 GeV
- m = 4.5 GeV
- m = 12.0 GeV



- Massless result [Mahlon]
- m = 0.5 GeV
- m = 4.5 GeV
- m = 12.0 GeV
- m = 20.0 GeV

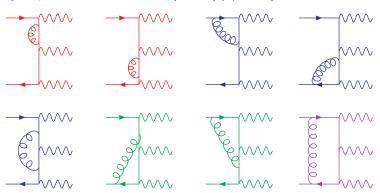
$pp \rightarrow VVV \text{ NLO}$

NLO corrections to tri-boson production

- pp → ZZZ
- $pp \rightarrow W^+ ZZ$
- $pp \rightarrow W^+W^-W^+$

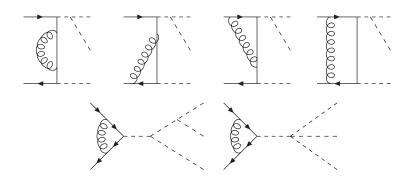
T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau, arXiv:0804.0350 [hep-ph]

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]



Poles $1/\epsilon^2$ and $1/\epsilon$

$$\sigma^{\rm NLO, virt}|_{\rm div} = -C_F \frac{\alpha_s}{\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} (s_{12})^{-\epsilon} \left(\frac{1}{\epsilon^2} + \frac{3}{2\epsilon}\right) \sigma^{\rm LO}$$



Hankele and Zeppenfeld arXiv:0712.3544 [hep-ph]

pp → *VVV* VIRTUAL CORRECTIONS

A still naive implementation

pp → VVV VIRTUAL CORRECTIONS

A still naive implementation

• Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools
- \bullet R_2 terms added by hand

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools
- \bullet R_2 terms added by hand

Comparison with LMP

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools
- \bullet R_2 terms added by hand

Comparison with LMP

• Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools
- R₂ terms added by hand

Comparison with LMP

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals

A still naive implementation

- Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R₁ terms by CutTools
- R₂ terms added by hand

Comparison with LMP

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals
- A bit more work to uncover the differences in scalar function normalization that happen to show to order ϵ^2 thus influence only 5-point loop integrals.

pp → *VVV* VIRTUAL CORRECTIONS

Typical precision:

pp → VVV VIRTUAL CORRECTIONS

Typical precision:

• LMP: 9.573(66) about 1% error

Typical precision:

- LMP: 9.573(66) about 1% error
- OPP:

```
 \begin{cases} -26.45706742815552 \\ -26.457067428165503661018557937723426 \end{cases}
```

Typical precision:

- LMP: 9.573(66) about 1% error
- OPP:

```
 \begin{cases} -26.45706742815552 \\ -26.457067428165503661018557937723426 \end{cases}
```

Typical time: 10⁴ times faster (for non-singular PS-points)

$$\sigma^{NLO}_{q\bar{q}} \ = \ \int\limits_{VVVg} \left[d\sigma^R_{q\bar{q}} - d\sigma^A_{q\bar{q}} \right] + \int\limits_{VVV} \left[d\sigma^B_{q\bar{q}} + d\sigma^V_{q\bar{q}} + \int\limits_{g} d\sigma^A_{q\bar{q}} + d\sigma^C_{q\bar{q}} \right]$$

$$\sigma^{NLO}_{q\bar{q}} \ = \ \int\limits_{VVVg} \left[d\sigma^R_{q\bar{q}} - d\sigma^A_{q\bar{q}} \right] + \int\limits_{VVV} \left[d\sigma^B_{q\bar{q}} + d\sigma^V_{q\bar{q}} + \int\limits_{g} d\sigma^A_{q\bar{q}} + d\sigma^C_{q\bar{q}} \right]$$

$$\mathcal{D}^{q_1 g_6, \bar{q}_2} = \frac{8\pi \alpha_s C_F}{2\tilde{x} p_1 \cdot p_6} \left(\frac{1 + \tilde{x}^2}{1 - \tilde{x}} \right) |\mathcal{M}^B_{q\bar{q}}(\tilde{p}_{16}, p_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5)|^2$$

$$\sigma^{NLO}_{q\bar{q}} \ = \ \int\limits_{VVVg} \left[d\sigma^R_{q\bar{q}} - d\sigma^A_{q\bar{q}} \right] + \int\limits_{VVV} \left[d\sigma^B_{q\bar{q}} + d\sigma^V_{q\bar{q}} + \int\limits_{g} d\sigma^A_{q\bar{q}} + d\sigma^C_{q\bar{q}} \right]$$

$$\mathcal{D}^{q_1 g_6, \bar{q}_2} = \frac{8\pi \alpha_s C_F}{2\tilde{x} p_1 \cdot p_6} \left(\frac{1 + \tilde{x}^2}{1 - \tilde{x}} \right) |\mathcal{M}^B_{q\bar{q}}(\tilde{p}_{16}, p_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5)|^2$$

$$\tilde{x} = \frac{p_1 \cdot p_2 - p_2 \cdot p_6 - p_1 \cdot p_6}{p_1 \cdot p_2}
\tilde{p}_{16} = \tilde{x} p_1 , \quad K = p_1 + p_2 - p_6 , \quad \tilde{K} = \tilde{p}_{16} + p_2
\Lambda^{\mu\nu} = g^{\mu\nu} - \frac{2(K^{\mu} + \tilde{K}^{\mu})(K^{\nu} + \tilde{K}^{\nu})}{(K + \tilde{K})^2} + \frac{2\tilde{K}^{\mu}K^{\nu}}{K^2}
\tilde{p}_i = \Lambda p_i$$

$$d\sigma^{R}_{q\bar{q}} - d\sigma^{A}_{q\bar{q}} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[C_{F} |\mathcal{M}^{R}_{q\bar{q}}(\{p_{j}\}')|^{2} - \mathcal{D}^{q_{1}g_{6},\bar{q}_{2}} - \mathcal{D}^{\bar{q}_{2}g_{6},q_{1}} \Big] d\Phi_{VVVg}$$

$$d\sigma^{R}_{q\bar{q}} - d\sigma^{A}_{q\bar{q}} \ = \ \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[C_{F} \, |\mathcal{M}^{R}_{q\bar{q}}(\{p_{j}\}')|^{2} - \mathcal{D}^{q_{1}g_{6},\bar{q}_{2}} - \mathcal{D}^{\bar{q}_{2}g_{6},q_{1}} \Big] d\Phi_{VVVg}$$

$$\begin{split} d\sigma_{q\bar{q}}^{C} + \int\limits_{g} d\sigma_{q\bar{q}}^{A} &= \frac{\alpha_{s}C_{F}}{2\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} \left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \left[\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} - \frac{2\pi^{2}}{3}\right] d\sigma_{q\bar{q}}^{B} \\ &+ \frac{\alpha_{s}C_{F}}{2\pi} \int\limits_{0}^{1} dx \; \mathcal{K}^{q,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1},p_{2}) + \frac{\alpha_{s}C_{F}}{2\pi} \int\limits_{0}^{1} dx \; \mathcal{K}^{\bar{q},\bar{q}}(x) \, d\sigma_{q\bar{q}}^{B}(p_{1},xp_{2}) \end{split}$$

$$\mathcal{K}^{q,q}(x) = \mathcal{K}^{\bar{q},\bar{q}}(x) \qquad = \qquad \left(\frac{1+x^2}{1-x}\right) - \log\left(\frac{s_{12}}{\mu_E^2}\right) + \left(\frac{4\log(1-x)}{1-x}\right)_+ + (1-x) - 2(1+x)\log(1-x)$$

$$\sigma_{gq}^{NLO} \ = \ \int\limits_{VVV} \left[\int\limits_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int\limits_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$\sigma_{gq}^{NLO} = \int\limits_{VVV} \left[\int\limits_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int\limits_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$d\sigma_{gq}^R - d\sigma_{gq}^A = \frac{C_S}{N} \frac{1}{2s_{12}} \left[T_R |\mathcal{M}_{gq}^R|^2 - \mathcal{D}^{g_1 q_6, q_2} \right] d\Phi_{VVVq}$$

$$\sigma_{gq}^{NLO} \ = \ \int\limits_{VVV} \left[\int\limits_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int\limits_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$d\sigma_{gq}^{R} - d\sigma_{gq}^{A} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[T_{R} |\mathcal{M}_{gq}^{R}|^{2} - \mathcal{D}^{g_{1}q_{6},q_{2}} \Big] d\Phi_{VVVq}$$

$$\mathcal{D}^{g_1 q_6, q_2} = \frac{8\pi \alpha_s T_R}{\tilde{x} 2 p_1 \cdot p_6} [1 - 2 \tilde{x} (1 - \tilde{x})] |\mathcal{M}_{q\bar{q}}^B(\tilde{p}_j)|^2$$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$

$$\mathcal{K}^{g,q}(x) = \left[x^{2} + (1-x)^{2}\right] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2\left[x^{2} + (1-x)^{2}\right] \log(1-x)$$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$

$$\mathcal{K}^{g,q}(x) = \left[x^{2} + (1-x)^{2}\right] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2\left[x^{2} + (1-x)^{2}\right] \log(1-x)$$

$$d\sigma(P_1, P_2) = \sum_{ab} \int dz_1 dz_2 f_a(z_1, \mu_F) f_b(z_2, \mu_F) d\sigma_{ab}(z_1 P_1, z_2 P_2)$$

 $q\bar{q}$, $\bar{q}q$, gq, qg, $g\bar{q}$, $\bar{q}g$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$

$$\mathcal{K}^{g,q}(x) = \left[x^{2} + (1-x)^{2}\right] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2\left[x^{2} + (1-x)^{2}\right] \log(1-x)$$

$$d\sigma(P_1, P_2) = \sum_{ab} \int dz_1 dz_2 f_a(z_1, \mu_F) f_b(z_2, \mu_F) d\sigma_{ab}(z_1 P_1, z_2 P_2)$$

 $q\bar{q}$, $\bar{q}q$, gq, qg, $g\bar{q}$, $\bar{q}g$

check also with phase-space slicing method

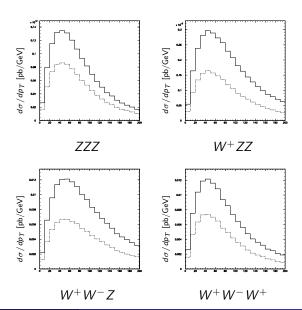
- Virtual contributions obtained with Cuttools
- ullet O(100ms) per "event" o factor $O(10-10^2)$

- Virtual contributions obtained with Cuttools
- ullet O(100ms) per "event" o factor $O(10-10^2)$
- Real contributions obtained with Helac
- Positive/negative (un)weighted events

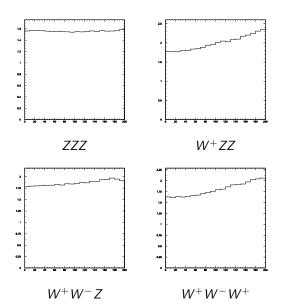
- Virtual contributions obtained with Cuttools
- ullet O(100ms) per "event" o factor $O(10-10^2)$
- Real contributions obtained with Helac
- Positive/negative (un)weighted events

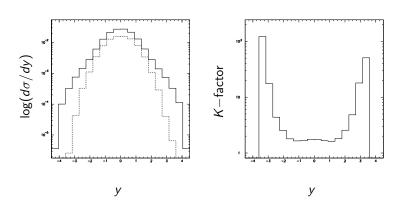
Process	scale μ	Born cross section [fb]	NLO cross section [fb]
ZZZ	$3M_Z$	9.7(1)	15.3(1)
WZZ	$2M_Z + M_W$	20.2(1)	40.4(2)
WWZ	$M_Z + 2M_W$	96.8(6)	181.7(8)
WWW	$3M_W$	82.5(5)	146.2(6)

$pp \rightarrow \overline{VVV} \text{ NLO}$



$p\overline{p} \rightarrow VVV \text{ NLO}$



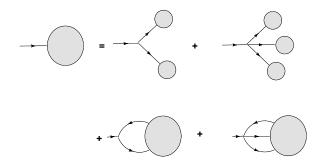


$pp \rightarrow \overline{VVV} \overline{NLO}$

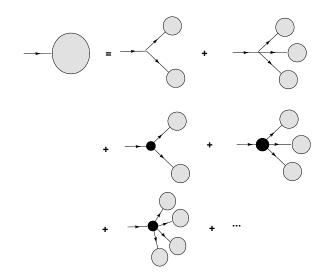
scale	σ_B	σ_{NLO}	K
$\mu = M/2$	82.7(5)	153.2(6)	1.85
$\mu = M$	81.4(5)	144.5(6)	1.77
$\mu = 2M$	81.8(5)	139.1(6)	1.70

scale	σ_{B}	$\sigma_{\it NLO}$	K
$\mu = M/2$	20.2(1)	43.0(2)	2.12
$\mu = M$	20.0(1)	39.7(2)	1.99
$\mu = 2M$	19.7(1)	37.8(2)	1.91

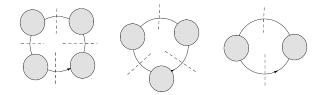
AMPLITUDE CALCULATION-I



AMPLITUDE CALCULATION-II



AMPLITUDE CALCULATION-III



Reduction at the integrand level

Reduction at the integrand level

• changes the computational approach at one loop

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

Understand potential stability problems

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections

Future

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections

Future

Automatize through Dyson-Schwinger equations

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections

Future

Automatize through Dyson-Schwinger equations

A generic NLO calculator seems feasible