Supersymmetry at higher orders

- 3-loop corrections to the Higgs boson mass
- α_s at the GUT scale to 3-loop accuracy

Luminita Mihaila

Universität Karlsruhe

in collaboration with

R. Harlander, P. Kant, M. Steinhauser

3-loop corrections to the Higgs boson mass

Motivation

Experiment LHC: $\delta m_h^{\exp} = 100 - 200 \,\mathrm{MeV}$ and ILC: $\delta m_h^{\exp} = 50 \,\mathrm{MeV}$

Theory: Higgs sector of the MSSM perturbatively calculable ($m_h \leq 135 \, \text{GeV}$)

Motivation

Experiment LHC: $\delta m_h^{\exp} = 100 - 200 \text{ MeV}$ and ILC: $\delta m_h^{\exp} = 50 \text{ MeV}$ Theory: Higgs sector of the MSSM perturbatively calculable ($m_h \le 135 \text{ GeV}$)

- Exact 1-loop [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]
- P 2-loop $O(\alpha_t \alpha_s, \alpha_t^2, \alpha_b \alpha_s, \alpha_b \alpha_t)$ in effective potential approximation ($p^2 = 0$) [Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01], [Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00], [Heinemeyer et al '05], [S. Martin '03]
- Momentum-dependent corrections ($p^2 = m_h^2$): 2-loop SUSY-QCD [S.Martin '05]
- **9** 3-loop LL and NLL $\mathcal{O}(lpha_t lpha_s^2, \, lpha_t^2 lpha_s, \, lpha_t^3)$ [S. Martin '07]

Motivation

Experiment LHC: $\delta m_h^{\exp} = 100 - 200 \text{ MeV}$ and ILC: $\delta m_h^{\exp} = 50 \text{ MeV}$ Theory: Higgs sector of the MSSM perturbatively calculable ($m_h \le 135 \text{ GeV}$)

- Exact 1-loop [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]
- P 2-loop $O(\alpha_t \alpha_s, \alpha_t^2, \alpha_b \alpha_s, \alpha_b \alpha_t)$ in effective potential approximation ($p^2 = 0$) [Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01], [Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00], [Heinemeyer et al '05], [S. Martin '03]
- Momentum-dependent corrections ($p^2 = m_h^2$): 2-loop SUSY-QCD [S.Martin '05]
- **9** 3-loop LL and NLL $\mathcal{O}(lpha_t lpha_s^2, \, lpha_t^2 lpha_s, \, lpha_t^3)$ [S. Martin '07]
- \blacksquare Missing contributions: $\delta m_h^{
 m th}\simeq 3-5\,{
 m GeV}$ [G. Degrassi et al '02], [Allanach et al '04]
 - full 2-loop corrections
 - full 3-loop SUSY-QCD corrections

MSSM:

$$V_0 = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

MSSM:

$$V_0 = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

 m_1, m_2, M_{12} : soft SUSY breaking terms g, g': SU(2) and U(1) gauge couplings $\epsilon_{12} = -1$

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1}^{0} + i\chi_{1}^{0})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2}^{0} + i\chi_{2}^{0})/\sqrt{2} \end{pmatrix}$$

MSSM:

$$V_0 = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

Additional parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

MSSM:

$$V_0 = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

Additional parameters: $\tan\beta=v_2/v_1, \quad M_A^2=-m_{12}^2(\tan\beta+\cot\beta)$ Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 $\hat{\Sigma}_{\phi_i} = \text{renormalized self-energies}$

MSSM:

$$V_{0} = m_{1}^{2}H_{1}\bar{H}_{1} + m_{2}^{2}H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.}) + \frac{g'^{2} + g^{2}}{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \frac{g^{2}}{2}|H_{1}\bar{H}_{2}|^{2}$$

Additional parameters: $\tan\beta=v_2/v_1, \quad M_A^2=-m_{12}^2(\tan\beta+\cot\beta)$ Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 V_{eff} -approximation: $p^2 = 0 \Rightarrow \hat{\Sigma}_i(0) = \Sigma_i(0) - \delta V_i$

 $\Sigma_i(0) =$ bare self-energies

$$\delta V_i$$
 = Higgs potential counterterms

MSSM:

$$V_0 = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

Additional parameters: $\tan\beta=v_2/v_1, \quad M_A^2=-m_{12}^2(\tan\beta+\cot\beta)$ Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 $V_{\rm eff}$ -approximation: $p^2 = 0 \Rightarrow \hat{\Sigma}_i(0) = \Sigma_i(0) - \delta V_i$

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

1-loop:

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

2-loops:

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

3-loops:

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

- \checkmark \simeq 16.000 diagrams
- Computer programs: QGRAF, PERL, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Harlander; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

- m s \simeq 16.000 diagrams
- Computer programs: QGRAF, PERL, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Harlander; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Majorana character of \tilde{g}

Approximations:

- $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections $\rightsquigarrow \mathcal{O}(M_{\rm top}^4)$
- no-mixing in the top-sector $\rightsquigarrow M_{\tilde{t}_1} = M_{\tilde{t}_2}$
- A_t -contributions neglected $\rightsquigarrow A_t = 0$

$$\Rightarrow \hat{\Sigma}_{\phi_1}(0) = 0, \quad \hat{\Sigma}_{\phi_1\phi_2}(0) = 0$$

Computation of $\hat{\Sigma}_{\phi_2}(0)$ at 3-loops:

- \square \simeq **16.000** diagrams
- Computer programs: QGRAF, PERL, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Harlander; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Aymptotic expansion ~>> 3-loop tadpole integrals

Regularization and Renormalization

- Segularization: Dimensional Reduction $\rightsquigarrow \varepsilon$ -scalars
 - \checkmark anti-commuting γ_5
- Renormalization
 - α_s in $\overline{\text{DR}}$ scheme to 1-loop
 - M_t, M_{t̃1}, M_{t̃2} in OS scheme to 2-loops
 [Bednyakov, Onishchenko, Velizhanin and Veretin '02], [S. Martin '03,'05]
 re-computed for specific mass hierarchies
 - \blacksquare $M_{\tilde{g}}$ in OS scheme to 1-loop [Pierce, Bagger, Matchev and Zahng '96]
 - $M_{\varepsilon} \text{ in OS scheme to 1-loop} [Bednyakov, Onishchenko, Velizhanin and Veretin '02] } M_{\varepsilon} = 0 \Leftrightarrow \overline{\mathsf{DR}'}$
 - $\boldsymbol{P}_{\tilde{t}}$ in OS scheme to 1-loop [Pierce, Bagger, Matchev and Zahng '96]
 - $A_t \rightsquigarrow 2M_t A_t = (M_{\tilde{t}_1}^2 M_{\tilde{t}_2}^2) \sin 2\theta_t + 2M_t \mu_{\text{SUSY}} \cot \beta$

Cross Checks

- exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
- 2- and 3-loop results: gauge independent

SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
): $\delta M_h^{(3)} = 0$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

• SUSY-limit (
$$M_t = M_{\tilde{t}}$$
, $M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

■ SUSY-limit (
$$M_t = M_{\tilde{t}}$$
, $M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$\begin{aligned} \bullet \quad M_t \ll M_{\tilde{t}_1} &= M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\text{SUSY}} \ll M_{\tilde{q}} \\ \hat{\Sigma}_{\phi_2} &= \frac{3G_F M_t^4}{\sqrt{2}\pi^2 \sin^2 \beta} \bigg\{ L_{tS} + \frac{\alpha_s}{\pi} \left[-4L_{tS} + 2L_{tS}^2 \right] + \left(\frac{\alpha_s}{\pi}\right)^2 \left[\frac{671}{324} + \frac{1}{27}\pi^2 + \frac{1}{9}\zeta_3 \\ &+ \left(-\frac{1591}{108} - 3L_{\mu t} + \frac{1}{3}\pi^2 - \frac{4}{9}\pi^2 \ln 2 + \frac{55}{18}L_{t\tilde{q}} + \frac{5}{6}L_{t\tilde{q}}^2 \right) L_{tS} \\ &+ \left(\frac{13}{18} + \frac{3}{2}L_{\mu t} - \frac{5}{3}L_{t\tilde{q}} \right) L_{tS}^2 + \frac{53}{18}L_{tS}^3 \\ &+ \left(\frac{475}{108} - \frac{5}{9}\pi^2 \right) L_{t\tilde{q}} - \frac{25}{36}L_{t\tilde{q}}^2 - \frac{5}{18}L_{t\tilde{q}}^3 + \mathcal{O}\left(\frac{M_{SUSY}^2}{M_{\tilde{q}}^2}\right) \bigg] \bigg\} \end{aligned}$$

 $L_{\mu t} = \ln(\mu^2/M_t^2), \quad L_{tS} = \ln(M_t^2/M_{SUSY}^2), \quad L_{t\tilde{q}} = \ln(M_t^2/M_{\tilde{q}}^2)$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

9 SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

9 SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

9 SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

• SUSY-limit (
$$M_t = M_{\tilde{t}}$$
, $M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$) : $\delta M_h^{(3)} = 0$

Mass hierarchies

4

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

- Cross Checks
 - exact 2-loop results: agreement with [FeynHiggs], [Degrassi, Slavich, Zwirner '01]
 - 2- and 3-loop results: gauge independent

9 SUSY-limit (
$$M_t = M_{\tilde{t}}, M_{\tilde{g}} = M_q = M_{\tilde{q}} = 0$$
) : $\delta M_h^{(3)} = 0$

Mass hierarchies

$$M_t \ll M_{\tilde{t}_1} = M_{\tilde{t}_2} = M_{\tilde{g}} \equiv M_{\rm SUSY} \ll M_{\tilde{q}}$$

Input parameters:

$$\mu = M_t = 170.9 \text{ GeV} \qquad G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$$
$$M_Z = 91.1876 \text{ GeV} \qquad \alpha_s^5(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$$
$$M_A = 1 \text{ TeV} \qquad \tan \beta = 40 \qquad M_{\tilde{q}} = 2 \text{ TeV}$$

$$\Delta M_h^{(n)} \equiv M_h^{(n-\text{loop})} - M_h^{\text{tree}}$$

M_{SUSY} (GeV)

800 1000 1200 1400 1600 1800 2000

 0_{200}^{L}

400

600

Input parameters: $\mu = M_t = 170.9 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^5(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ $\tan \beta = 40$ $M_{\tilde{q}} = 2 \text{ TeV}$ $M_A = 1 \text{ TeV}$

$$\Delta M_h^{(n)} \equiv M_h^{(n-\text{loop})} - M_h^{\text{tree}}$$

Input parameters: $\mu = M_t = 170.9 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ $M_A = 1 \text{ TeV}$ $\tan \beta = 40$ $M_{\tilde{q}} = 2 \text{ TeV}$

 $M_{
m SUSY} = 0.3 - 1 \text{ TeV}: \quad \Delta M_h^{(3)} \simeq \Delta M_h^{(2)} \pm 500 \text{ MeV}$

Input parameters:
$$\mu = M_t = 170.9 \text{ GeV}$$
 $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$
 $M_Z = 91.1876 \text{ GeV}$ $\alpha_s(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$
 $M_A = 1 \text{ TeV}$ $\tan \beta = 40$ $M_{\tilde{q}} = 2 \text{ TeV}$

 $M_{
m SUSY} = 0.3 - 1 \text{ TeV}: \quad \Delta M_h^{(3)} \simeq \Delta M_h^{(2)} \pm 500 \text{ MeV}$

Renormalization scale dependence

α_s at the GUT scale to 3-loop accuracy

MSSM and LEP data

[Amaldi, Furstenau, de Boer] [Langacker, Luo] [Ellis, Kelley, Nanopoulos]

- Gauge Coupling unification within SM excluded by about 12σ .
- Gauge coupling Unification within SUSY GUTs works extremely well: it fits within 3σ the present low energy data.

High precision data

- Computation: common SUSY mass scale $\simeq 1$ TeV 2-loop Renormalization Group Running 1-loop threshold corrections at the weak scale (M_Z)
- **Our aim:** improve theoretical accuracy on $\alpha_s(M_{GUT})$ calculated from $\alpha_s(M_Z)$

Evolution of the strong coupling

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \boldsymbol{\beta}(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \boldsymbol{\beta}(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

9 3-loop β_s in the MSSM

- $= \simeq 10.000$ diagrams
- Computer programs: QGRAF, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Effective Field Theory:

Effective Field Theory:

$$\mathcal{L}_{\mathrm{MSSM}}(\alpha_s^{(\mathrm{full})},\ldots) \longrightarrow \mathcal{L}(\alpha_s^{(5)},\ldots)$$
 at energy μ

"Matching": low energy physics must be unchanged !!

$$\alpha_s^{(5)} = \boldsymbol{\zeta}_s \, \alpha_s^{\text{(full)}}$$

$$\vdots$$

$$\boldsymbol{\zeta}_s = \boldsymbol{\zeta}_s (\alpha_s, M_{\text{SUSY}}, m_t, \mu)$$

Effective Field Theory:

 $\mathcal{L}_{\mathrm{MSSM}}(\alpha_s^{(\mathrm{full})},\ldots) \longrightarrow \mathcal{L}(\alpha_s^{(5)},\ldots)$ at energy μ

"Matching": low energy physics must be unchanged !!

$$\alpha_s^{(5)} = \boldsymbol{\zeta}_s \, \alpha_s^{\text{(full)}}$$

$$\vdots$$

$$\boldsymbol{\zeta}_s = \boldsymbol{\zeta}_s(\boldsymbol{\alpha}_s, M_{\text{SUSY}}, m_t, \boldsymbol{\mu})$$

- Solution Relate Green functions in the full and effective theory for $p^2 = 0$
 - **1**-loop ζ_s in MSSM [Pierce et al '95]
 - **2-loop** ζ_s in MSSM [R. Harlander, L. M., M. Steinhauser '05], [A. Bauer, L. M., J. Salomon in progress]

Solution Wish: $\alpha_s(M_{\rm GUT})$ independent of the matching scale

Solution Wish: $\alpha_s(M_{GUT})$ independent of the matching scale

Solution Wish: $\alpha_s(M_{GUT})$ independent of the matching scale

Solution Wish: $\alpha_s(M_{GUT})$ independent of the matching scale

Comparison with the Leading-Log Approximation SPA-Convention'05

SPA: state of the art at < 2007

Sensitivity of $\alpha_s(M_{GUT})$ to SUSY-mass scale:

Conclusions

- m_h to 3-loop accuracy
 - 3-loop effects larger than experimental accuracy expected at LHC & ILC
 - 3-loop corrections stabilize the perturbative series

- $\alpha_{\rm s}^{\overline{\rm DR}}(M_{\rm GUT})$ to 3-loop accuracy
 - 3-loop effects comparable with experimental accuracy on α_s
 - $\alpha_{\rm s}(M_{\rm GUT})$ very sensitive to SUSY-mass scale