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NLO corrections

NLO corrections are very important

NLO corrections are large in particular in QCD
NLO corrections affect the shape of distributions

New production channels may open at NLO, affecting both
cross sections and distributions

Reduce the scale uncertainty of tree level cross sections
The signals can closely resemble the background

A precise understanding of the background is then
mandatory

Precise studies at the LHC will require NLO corrections for
many high multiplicity QCD background processes
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Ingredients of NLO computation

The NLO correction has two parts

@ Real radiation part

@ Challenge is systematic extraction of the singularities
o Different methods

@ Subtraction method (dipole, antenna)
@ Sector decomposition
@ Phase space slicing

@ Automation possible [Gleisberg,Krauss;Seymour,Tevlin]
@ Virtual part

@ Current bottleneck for the automation of the NLO
corrections
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@ Traditional approach using Feynman diagram has a rapid
growth in complexity with the number of external states

@ Very large number of terms makes numerical evaluation
very challenging
@ 2 — 3,4 processes at the LHC
@ pp — WW +]
[Campbell,Ellis,Zanderighi;Dittmaier,Kallweit,Uwer]
@ gg — gggg [Ellis,Giele,Zanderighi]
@ pp — H + 2j (via gluon fusion) [Campbell Ellis,Zanderighi]
@ pp — H + 2j (via weak interactions)
[Ciccolini,Denner,Dittmaier]
@ pp — W /Zbb [Febres Cordero, Reina, Wackeroth]
pp — WWZ [Hankele,Zeppenfeld]
@ pp — H +tt [Beenakker, Dittmaier, Kramer, Plimper, Spira,
Zerwas; Dawson, Jackson, Reina, Wackeroth]
@ pp — H + 3j (leading contribution)
[Figy,Hankele,Zeppenfeld]
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@ Numerical methods based on sector decomposition
pp — ZZZ [Lazopoulos,Melnikov,Petriello]
pp — ttZ [Lazopoulos,McEImurry,Melnikov,Petriello]
@ Unitarity method
@ Many new analytic results
@ (Few) numerical results using unitarity techniques:
ete™ — Z — 4partons [Bern,Dixon,Kosower,Weinzier|]
included in MCFM [Campbell Ellis]
7277 \NZ2Z WWZ,777 [Binoth,Ossola,Papadopoulos,Pittaul]
@ Tools: CutTools [Ossola,Papadopoulos,Pittau]
@ Numerical implementations [Ellis,Giele,Kunszt,Melnikov;
Mastrolia,Ossola,Papadopoulos,Pittau]




Goal: Automating the computation of one-loop amplitudes
using on-shell methods

@ C++ code
@ To compute one-loop virtual amplitudes we use
@ Unitarity bootstrap
@ generalized unitarity + recursion relations
@ Spinor-helicity formalism
@ Complex momenta



One-Loop Decomposition

A one-loop amplitude can be decomposed into a sum of
coefficients multiplying scalar integrals and rational terms.

A = R+C
Zi:bij:tJrzi:ciAJrzi:dim

@ The task is reduced to determining the coefficients

C

@ The coefficients b;, ¢, di can be computed using
generalized unitarity techniques in d = 4 dimensions

@ The rational part has to be computed separately.
= use recursion relations
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A unitarity cut is the replacement
i

pZ —m2 +ie

Cut can be used to isolate integral coefficient

O

— 276(p? — m?)

A =
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With one massless leg in one corner:
sn (17K KK gy |1%) L, B _<1:F!’Y”K2K3K4!1i>

Lo 2(1FMaK,1E) T 7 2(1F[KoK, 1Y)
sn (17K KK 4|1E) B _<1:F!K2K3'Y”K4!1i>
S 2(1FKKAL) Tt 21T KoK, 1)

Gram determinant for K2 = 0
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Momentum parametrization with two massless four vectors
[del Aguila,0Ossola,Papadopoulos,Pittau;Forde]

[0 [0
I = ank{ + agky + = (kv ka] + 5 (ka7 fka]
The three delta functions fix three of the coefficients «;
u"ﬂ"ﬂt"u”l"ﬂ"
I# =Ky + Ky + > <K1"Y ’Kz} + 5 <K2\7 \K1]
Triple cut is a function of t

c_ c_ c_ d;
C(t):t—;+t—22+T1+Co+Clt+C2t2+C3t3+ Z tilt
poles 5'( B ')

Poles in t originate from additional propagators going on-shell

(i — K)2 — (t—1)&



Subtracted triple cut is a function of t [OPP]

C_ C_ Cc_
T() = 3+ + - +coteat+eat? +cat?
19 2rij /(2p+1)
Co = Ta(toe?™/\eP
0 2p+1_§ 3(to )

i=-p

@ Discrete Fourier projection avoids numerically unstable
matrix invertions.
@ Ensures good numerical accuracy




Momentum parametrization with two massless four vectors
1 = aakf! + gk} + 22 (ki k] + 5 (ke fkal
The two delta functions leave two free parameters o
= yRE (1) s (Ra] + XY (i)
Double cut integrand is a function of t and y

Ca(y.t) = Au(t.y)Ax(ty)
Ba(y,t) = Ca(y,t)— > box — > triangle

_ io 24: [Bz (o,t0 e2”‘1/5) + 3B, (2/3,t0 e2”‘1/5)] .
j=0



Use the analytic properties of the one-loop amplitude to

construct the rational term

@ Complex shift p; — p1(2), p2 — p2(2)

A(z) =R(z)+C(z)

A(zz) @

@ A®)
Rs(z C(z
Res;, SZ( s) _ —Res;, - (zs) —— .
S S A(z2)

@ Spurious poles zg appear in C(z) and R(z) due to Gram

determinants

® The residues of R(z)/z and C(z)/z at the unphysical
poles have to cancel since A(z) has no spurious poles.



R(z1)
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R(z3)®
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@ R(z) factorizes at the physical pole locations, so that we
can use recursion relations. [Bern,Dixon,Kosower]

D S S S .=

R(z
Rp = — Resﬁ
Zp Zp

Zp




1 [R(z i)
/L =Ry * (23)®
r

2 z o n0l® .
R(z )
R(0) = Ry — lgeeL =) o

pOleSa Z=Zn z r

R S ReR® ¥ geRO)

Zs z Zp V4

Spur phys

_ (25)

= Ry + Z F\;gs = +R
spur

The value R, of the contour integral at oo can be constructed
using an auxiliary recursion.




Numerical extraction of the spurious poles

Numerical spurious extraction is tricky, but possible because
@ Precise cut part input
@ Location of the spurious poles is known a priori
@ Only need to evaluate a small part of C(z) around the pole.

@ Only need rational part of the expansion of the integral
functions around vanishing Gram determinant

1 Aj _Sl+82+83< AV )2

13M(s1,82,83) — + =
3 ( 12 3) 6 51S,S3 120 S1S2S3

3 2
1 i —Sit1 — Si_ 1 A 1 A
2 Z Si+1Si-1 6Si+1Si-1 30 \Sj+1Si—1

@ We only need the pure rational pieces.
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@ Evaluation time

@ Control of numerical precision for exceptional points
@ Gram determinants
@ Large cancellations (between rational- and cut terms)
@ Using increased precision (32 digits, 64 digits) when
needed for some pieces
@ Automatic diagnosis




The precision of the computed amplitude can be assessed
@ Cut part

o 1 1/11 2n
Agn Oopyl/e,non—log = E Zbk = - [E (? - §N—c Agee’
k

@ Spurious poles

o 1
A oop(zs)|1/e, non—log = Z bk(zs) =0,
k

@ Big cut/rational cancellations




@ Accuracy: log,, (
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only double precision
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@ 100’000 points with cuts

o Er > 001\/§

@ Pseudo-rapidity n < 3

@ AR >04

Ar =

2
,/A%+A¢









Timing

@ 2.33 GHz Xeon processor

\ helicity | cut part only | double prec. only | multi-prec. |
——++++ 2.4 ms 6.8 ms 8.3 ms
——ft++++ 4.2 ms 10.5 ms 14 ms
——++++++ 6.1 ms 28 ms 43 ms
—+—+++ 3.1ms 17.3 ms 24 ms
TR 3.3ms 60 ms 76 ms
—— 44+ 4.4 ms 12 ms 16 ms
4 5.9 ms 42 ms 48 ms
T 6.9 ms 62 ms 80 ms

@ Bottleneck is the spurious pole evaluation

@ The effect of higher precision on the evaluation time is
noticeable but not dominant
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First tests passed
@ Numerical stability is under control
@ Evaluation time is reasonable
But still a long way to go...
@ Sums (color orderings+ external helicities)
@ Fermions (internal+external)
@ Vector bosons (external)
@ Masses (internal+external)
@ Speed and precision improvements
°

Combine with real part




