It's Simpler to be Singular

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy HEPTOOLS Network

LL08, Sonderhausen, April 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Based on work done in collaboration with Stefano Goria Discussions with Ansgar Denner and Stefan Dittmaier are acknowledged.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○

Outlines

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□= →のへで

Outlines

Outlines

(1, <mark>2</mark>,)

2

- From the analytical structure of Feynman diagrams
 - to their numerical evaluation

what else, but the inevitable!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Part I

Intermezzo

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < @

A complete two-loop calculation

Oooops ... $H \rightarrow \gamma \gamma, gg \sim$

This is what I should have been talking about S. Actis, C. Sturm, S. Uccirati and myself (\approx 10 kilohour)

Part II

Sonata form

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

A celebrated result with too many fathers

Theorem

$$\sum \left\{ \begin{array}{l} 1 \text{-loop } n \text{-legs Feynman diagrams} \\ \\ \sum_{\mathcal{D}} B_{\mathcal{D}} D_0 \left(P_1^{\mathcal{D}}, \dots, P_4^{\mathcal{D}} \right) + \cdots \end{array} \right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

 \mathcal{D} partition of $\{1 \dots n\}$ into 4 non-empty sets $P_i^{\mathcal{D}}$ sum of momenta in $i \in \mathcal{D}$

Bases are bases, and troubles are troubles

Scalar one-loop integrals

form a basis. Thus, coefficients are uniquely determined, although some method can be more efficient than others in their determination. However, troublesome points will always be there (Denner-Dittmaier anathema). What to do?

- Change (adapt) bases?
- Avoid bases (expansion)?
- Rethinking necessary.

Part III

Factorization of Feynman amplitudes

◆□▶ ◆□▶ ◆三▼ ▲□▶ ▲□

Factorization

Any Feynman diagram

is particularly simple when evaluated around its anomalous threshold.

Kershaw theorem (1972)

The singular part of a scattering amplitude around its leading Landau singularity may be written as an algebraic product of the scattering amplitudes for each vertex of the corresponding Landau graph times a certain explicitly determined singularity factor which depends only on the type of singularity (triangle graph, box graph, etc.) and on the masses and spins of the internal particles.

One-loop, multi-legs

Define

scalar one-loop N-leg integral in n-dimensions as

$$S_{n;N} = \frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,N-1} (i)},$$

(i) = $(q + k_{0} + \dots + k_{i})^{2} + m_{i}^{2},$

Use *N*-simplex

$$\int dS_{N} = \prod_{i=1}^{N} \int_{0}^{x_{i-1}} dx_{i}, \qquad x_{0} = 1.$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N-\frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

$$V_N = x^t H_N x + 2 K_N^t x + L_N, \quad X_N = -K_N^t H_N^{-1}$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N-\frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

$$V_N = x^t H_N x + 2 K_N^t x + L_N, \quad X_N = -K_N^t H_N^{-1}$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N-\frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

$$V_{N} = x^{t} H_{N} x + 2 K_{V}^{t} x + L_{N}, \quad X_{N} = -K_{V}^{t} H_{V}^{-1}.$$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

Gram (determinant)

$$H_{ij} = -k_i \cdot k_j$$
 $G = \det H$

Caley (determinant) $M = \begin{pmatrix} H_N & K_N \\ K_N^t & L_N \end{pmatrix}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

Gram (determinant)

$$H_{ij} = -k_i \cdot k_j$$
 $G = \det H$

Caley (determinant) $M = \begin{pmatrix} H_N & K_N \\ K_N^t & L_N \end{pmatrix}$

・ロト・日本・日本・日本・日本

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

$$H_{ij} = -k_i \cdot k_j$$
 $G = \det H$

Caley (determinant) $M = \begin{pmatrix} H_N & K_N \\ K_N^t & L_N \end{pmatrix}$

くして、 「「」、 「」、 「」、 「」、 「」、 (」、

One-loop, multi-legs IV

It follows

B = C/G, where $C = \det M$ is the so-called modified Cayley determinant of the diagram.

LS as pinches (masses & invariants $\in R$)

$$V_{\scriptscriptstyle N} = \left(x - X_{\scriptscriptstyle N}\right)^t \, H \, \left(x - X_{\scriptscriptstyle N}\right) + B_{\scriptscriptstyle N}$$

No discussion of the complex part of singular surface

 $B_N = 0$ induces a pinch on the integration contour at the point of coordinates $x = X_N$; therefore, if the conditions,

$$B_N = 0, \qquad 0 < X_{N,N-1} < \ldots < X_{N,1} < 1,$$

are satisfied we will have the leading singularity of the diagram.

Why to avoid Gram⁻¹?

A common wisdom, but?

- The vanishing of the Gram determinant is the condition for the occurence of non-Landau singularities, connected with the distorsion of the integration contour to infinity;
- furthermore, for complicated diagrams, there may be pinching of Landau (C = 0) and non-Landau singularities (G = 0), giving rise to a non-Landau singularity whose position depends upon the internal masses (so-called D² wild points).

AT and factorization

It follows:

- Given the above properties the factorization of Kershaw theorem follows.
- The beauty of being at the anomalous threshold is that everything is frozen and the amplitude factorizes.
- But, what to do with a point?
- It looks perfect for boundary conditions, as long as we can reach it. Alternative: expand & match residues at a given AT (Cachazo 2008).

Standard reduction vs modern techniques

Example

$$\frac{\mu^{\epsilon}}{i\pi^2} \int d^n q \frac{q \cdot p_1}{\prod_{i=0,3} (i)} = \sum_{i=1}^3 D_{1i} p_1 \cdot p_i = -\sum_{i=1}^3 D_{1i} H_{1i}.$$

carefull application of the method

$$D_{1i} = -rac{1}{2} H_{ij}^{-1} d_j, \quad d_i = D_0^{(i+1)} - D_0^{(i)} - 2 K_i D_0,$$

where $D_0^{(i)}$ is the scalar triangle obtained by removing propagator *i* from the box.

Standard reduction vs modern techniques II

Therefore we obtain

$$\frac{\mu^{\epsilon}}{i\pi^2} \int d^n q \, \frac{q \cdot p_1}{\prod_{i=0,3} (i)} = \frac{1}{2} \sum_{i,j=1}^3 H_{ij}^{-1} H_{1i} \, d_j = \frac{1}{2} \, d_1,$$

(no G_3). Furthermore, the coefficient of D_0 in the reduction is

$$\frac{1}{2}\left(m_0^2 - m_1^2 - p_1^2\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

(General feature of tensor- $N \rightarrow \text{scalar-} N$)

Standard reduction vs modern techniques III

Theorem

At the leading Landau singularity of the box we must have

$$q^2 + m_0^2 = 0,$$
 $(q + p_1)^2 + m_1^2 = 0,$ etc.

Therefore

the coefficient of D_0 is fixed by

$$2 q \cdot p_1 \Big|_{AT} = m_0^2 - m_1^2 - p_1^2,$$

which is what a careful application of SR gives. Note that one gets the coeff. without having to require a physical singularity.

From hexagons up: factorization at SubLeadingLandau ... Landshoff

$$F(\{n\}_{5}) \sim \frac{1}{6} \frac{\Delta X_{6i}}{B_{6}} X_{51}^{n_{1}}(i) \dots X_{5i}^{n_{i}+n_{i+1}}(i) \dots X_{54}^{n_{5}}(i) E_{0}^{\text{sing}}(i)$$

or $\frac{1}{6} \frac{\Delta X_{65}}{B_{6}} X_{51}^{n_{1}}(5) \dots X_{54}^{n_{4}}(5) E_{0}^{\text{sing}}(5) \delta_{n_{5},0} \quad i = 5$

▲ロト▲御ト▲画ト▲画ト 画 のQ@

Sunny-side up of factorization

Progress

- At least in one *point* we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region R_{phys} (support of Δ[±] in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even with invariants ∉ R_{phys}, implies a frozen q.

Sunny-side up of factorization

Progress

- At least in one *point* we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region R_{phys} (support of Δ[±] in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even with invariants ∉ R_{phys}, implies a frozen q.

・ コット (雪) (雪) (雪) (雪)

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2}\int d^n q \frac{1}{\prod_{i=0,N-1}(i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}}\int d^{n}q \frac{\mathbf{q}\cdot\mathbf{p}_{l}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) \mathbf{p}_{l}\cdot\mathbf{p}_{i}$$
$$\sum_{i=1}^{N} [N]_{n}(i) H_{li} \quad \stackrel{\sim}{\operatorname{AT}} \quad \sum_{i=1}^{N} [N]_{n}(1) H_{li} X_{i} = -\mathbf{K}_{l} [N]_{n}.$$

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2} \int d^n q \frac{1}{\prod_{i=0,N-1} (i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}}\int d^{n}q \frac{q \cdot p_{l}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) p_{l} \cdot p_{i}$$
$$\sum_{i=1}^{N} [N]_{n}(i) H_{li} \xrightarrow{\sim}_{AT} \sum_{i=1}^{N} [N]_{n}(1) H_{li} X_{i} = -K_{l} [N]_{n}.$$

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2} \int d^n q \frac{1}{\prod_{i=0,N-1} (i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}}\int d^{n}q \frac{q \cdot p_{l}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) p_{l} \cdot p_{i}$$
$$\sum_{i=1}^{N} [N]_{n}(i) H_{li} \xrightarrow{\sim}_{AT} \sum_{i=1}^{N} [N]_{n}(1) H_{li} X_{i} = -K_{l} [N]_{n}.$$

Generalized factorization II

Where

$$X_i = -K_j H_{ji}^{-1}, \qquad H X = -K$$

\rightarrow Factorization

At the AT all scalar products \rightarrow solution of

$$(q + \dots + p_i)^2 + m_i^2, \qquad i = 0, \dots, N-1.$$

・ロト・日本・山田・ 山田・ 山口・

Generalized factorization II

Where

$$X_i = -K_j H_{ji}^{-1}, \qquad H X = -K$$

\rightarrow Factorization

At the AT all scalar products \rightarrow solution of

$$(q + \dots + p_i)^2 + m_i^2, \qquad i = 0, \dots, N-1.$$

・ロト・日本・山田・ 山田・ 山口・

Generalized factorization II

Where

$$X_i = -K_j H_{ji}^{-1}, \qquad H X = -K$$

\rightarrow Factorization

At the AT all scalar products \rightarrow solution of

$$(q + \cdots + p_i)^2 + m_i^2, \qquad i = 0, \ldots, N-1.$$

・ロト・日本・山田・ 山田・ 山口・

Part IV

More on the AT

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

How frequent is AT in your calculation?

For N = 4 there are 14 branches in *p*-(real) space,

$$\begin{split} \rho_{l}^{0} &> 0, \rho_{k}^{0} < 0 \\ \\ M_{l}^{2} &< (m_{l} + m_{l})^{2}, \ M_{j}^{2} > (m_{l} - m_{j})^{2}, \ M_{k}^{2} < (m_{j} + m_{k})^{2}, \ M_{l}^{2} < (m_{k} - m_{l})^{2}, \\ \\ \rho_{l}^{0} &> 0, \rho_{l}^{0} < 0 \\ \\ M_{l}^{2} &< (m_{l} + m_{l})^{2}, \ M_{j}^{2} < (m_{l} + m_{j})^{2}, \ M_{k}^{2} > (m_{j} - m_{k})^{2}, \ M_{l}^{2} > (m_{k} - m_{l})^{2}, \end{split}$$

 $p_i^0>0,\; p_i^0<0,\; p_k^0>0,\; p_l^0<0,\;$

・ コート 人口 ト 人口 ト 人口 ト

AT
How frequent is AT in your calculation?

For N = 4 there are 14 branches in *p*-(real) space,

$$\begin{split} p_{i}^{0} &> 0, p_{k}^{0} < 0 \\ \\ M_{i}^{2} &< (m_{i} + m_{l})^{2}, \ M_{j}^{2} > \left(m_{i} - m_{j}\right)^{2}, \ M_{k}^{2} < \left(m_{j} + m_{k}\right)^{2}, \ M_{l}^{2} < (m_{k} - m_{l})^{2}, \\ \\ p_{i}^{0} &> 0, p_{j}^{0} < 0 \\ \\ \\ M_{i}^{2} &< (m_{i} + m_{l})^{2}, \ M_{j}^{2} < \left(m_{i} + m_{j}\right)^{2}, \ M_{k}^{2} > \left(m_{j} - m_{k}\right)^{2}, \ M_{l}^{2} > (m_{k} - m_{l})^{2}, \end{split}$$

 $ho_{l}^{0}>0, \
ho_{l}^{0}<0, \
ho_{k}^{0}>0, \
ho_{l}^{0}<0,$

$$M_i^2 \quad < \quad (m_i + m_l)^2 \;, \; M_j^2 < \left(m_i + m_j\right)^2 \;, \; M_k^2 < \left(m_j + m_k\right)^2 \;, \; M_l^2 < (m_k + m_l)^2 \;,$$

・ コット (雪) (雪) (雪) (雪)

How frequent is AT in your calculation?

For N = 4 there are 14 branches in *p*-(real) space,

$$\begin{split} p_i^0 &> 0, p_k^0 < 0 \\ M_i^2 &< (m_i + m_l)^2, \ M_j^2 > (m_i - m_j)^2, \ M_k^2 < (m_j + m_k)^2, \ M_l^2 < (m_k - m_l)^2, \\ p_l^0 &> 0, p_j^0 < 0 \\ M_i^2 &< (m_i + m_l)^2, \ M_j^2 < (m_i + m_j)^2, \ M_k^2 > (m_j - m_k)^2, \ M_l^2 > (m_k - m_l)^2, \\ p_l^0 &> 0, \ p_j^0 < 0, \ p_l^0 < 0, \ p_l^0 < 0, \end{split}$$

 $M_l^2 \quad < \quad \left(m_i + m_l\right)^2, \; M_j^2 < \left(m_i + m_j\right)^2, \; M_k^2 < \left(m_j + m_k\right)^2, \; M_l^2 < \left(m_k + m_l\right)^2,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

It's easier with Coleman - Norton

Example for pentagon

<ロ> (四) (四) (三) (三) (三)

AT

AT watch (ain't a tornado but)

For those who don't want an AT in their MC, beware of

AT watch II (Denner's devil)

Hexagons don't count but pentagons \leftarrow hexagons do!

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior[†]

• $C_0 \sim \ln B_3$;

•
$$D_0 \sim B_4^{-1/2};$$

•
$$E_0 \sim B_5^{-1};$$

• F_0 none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity †) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior †

• $C_0 \sim \ln B_3$;

•
$$D_0 \sim B_4^{-1/2};$$

•
$$E_0 \sim B_5^{-1};$$

• F_0 none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity †) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior[†]

• $C_0 \sim \ln B_3$;

•
$$D_0 \sim B_4^{-1/2};$$

•
$$E_0 \sim B_5^{-1};$$

• *F*₀ none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity †) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Non integrable pentagon singularity?

Problem

pentagon \rightarrow non-integrable pole

Solutions?

- spin + gauge cancellations
- 2 unstable particles → complex masses

Preliminar

- simple examples \rightarrow not the case
- 2 unitarity?
- for integ. sing. average over a Breit-Wigner of the invariant mass of unstable ext particles

Non integrable pentagon singularity?

Problem

pentagon \rightarrow non-integrable pole

Solutions?

- spin + gauge cancellations
- 2 unstable particles → complex masses

Preliminar

- $\ \, \hbox{ simple examples } \to \ \, \hbox{not} \\ \ \, \hbox{ the case }$
- 2 unitarity?
- for integ. sing. average over a Breit-Wigner of the invariant mass of unstable ext particles

・ コット (雪) (雪) (雪) (雪)

Non integrable pentagon singularity?

Problem

 $\begin{array}{l} \text{pentagon} \rightarrow \text{ non-integrable} \\ \text{pole} \end{array}$

Solutions?

- spin + gauge cancellations
- 2 unstable particles → complex masses

Preliminar

- simple examples \rightarrow not the case
- Ounitarity?
- for integ. sing. average over a Breit-Wigner of the invariant mass of unstable ext particles

Part V

Differential equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Differential equations, Regge Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta [†];
- one boundary condition.

Advantages

- on reduction;
- extedibility to higher loops.

Requires

• the right variable

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Differential equations, Regge Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta [†];
- one boundary condition.

Advantages

- on reduction;
- extedibility to higher loops.

Requires

the right variable

Differential equations, Regge Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta [†];
- one boundary condition.

Advantages

- no reduction;
- extedibility to higher loops.

Requires

the right variable

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy to derive, a fact that has to do with the hypergeometric character of one-loop diagrams.

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy to derive, a fact that has to do with the hypergeometric character of one-loop diagrams.

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)
- to write one-loop diagrams as

$$F(z_1, ..., z_m) = \sum_{\{n_i\}} A(n_1, ..., n_m) \prod_i \frac{z_i^{n_i}}{n_i!}$$

Since

$$\frac{A(\ldots, n_i + 1, \ldots)}{A(\ldots, n_i, \ldots)} = \frac{P_i(\{n_i\})}{Q_i(\{n_i\})} = \frac{\text{fin. pol.}}{\text{fin. pol.}}$$

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)
- to write one-loop diagrams as

$$F(z_1, ..., z_m) = \sum_{\{n_i\}} A(n_1, ..., n_m) \prod_i \frac{z_i^{n_i}}{n_i!}$$

Since

$$\frac{A(\ldots, n_i + 1, \ldots)}{A(\ldots, n_i, \ldots)} = \frac{P_i(\{n_i\})}{Q_i(\{n_i\})} = \frac{\text{fin. pol.}}{\text{fin. pol.}}$$

Hypergeometry of Feynman integrals

Then

$$\left[Q_i\left(\left\{z_i \frac{\partial}{\partial z_i}\right\}\right) z_i^{-1} - P_i\left(\left\{z_i \frac{\partial}{\partial z_i}\right\}\right)\right] F = 0.$$

With, e.g. for N = 4 (N = 5 P, Q are of third order)

$$s_{ij} = -(p_i + \ldots + p_{j-1})^2 \quad z_{ij} = \frac{s_{ij} - (m_i - m_j)^2}{4 m_i m_j}$$

$$P_{ij} = (n_i + 1) (n_j + 1), \quad n_i = \sum_{j > i} n_{ij} + \sum_{j < i} n_{ji}$$

$$Q_{ij} = (n_{ij} + 1) (n + \frac{5}{2}), \quad n = \sum_{i < j} n_{ij}$$

Hypergeometry of Feynman integrals

Then

$$\left[Q_i\left(\left\{z_i \frac{\partial}{\partial z_i}\right\}\right) z_i^{-1} - P_i\left(\left\{z_i \frac{\partial}{\partial z_i}\right\}\right)\right] F = 0.$$

With, e.g. for N = 4 (N = 5 P, Q are of third order)

$$s_{ij} = -(p_i + \dots + p_{j-1})^2 \quad z_{ij} = \frac{s_{ij} - (m_i - m_j)^2}{4 m_i m_j}$$

$$P_{ij} = (n_i + 1) (n_j + 1), \quad n_i = \sum_{j > i} n_{ij} + \sum_{j < i} n_{ji}$$

$$Q_{ij} = (n_{ij} + 1) (n + \frac{5}{2}), \quad n = \sum_{i < j} n_{ij}$$

Diffeomorphisms of Feynman diagrams

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Classification

$\textbf{M} \rightarrow \textbf{physical}$

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$\mathsf{s}_{ij} \rightarrow \mathsf{S}_{ij}(z) \in \mathsf{Phys}_z$$

no restriction on s_{ij}

$\mathsf{M} o \mathsf{unphysical}$

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$\mathsf{s}_{ij} \rightarrow \mathsf{S}_{ij}(z) \not\in \mathsf{Phys}_z$$

restriction on s_{ii}

・ロ・・日・・日・・日・ うへぐ

Classification

$\textbf{M} \rightarrow \textbf{physical}$

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$\mathsf{s}_{ij} \rightarrow \mathsf{S}_{ij}(z) \in \mathsf{Phys}_z$$

no restriction on s_{ij}

$M \rightarrow unphysical$

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$s_{ij} \rightarrow S_{ij}(z) \notin Phys_z$$

restriction on s_{ii}

・ロト・日本・山田・ 山田・ 山口・

Mappings: I

Mappings: S-I

Solution

$$P_i = (1-z) p_i + z p_{i+2} \mod 4$$

transf. invariants

$$M_{i}^{2} = z(1-z)u, \ S = (1-2z)^{2}s, \ T = (1-2z)^{2}t, \ U = u$$

$$r = z^{2}-z$$

$$r_{AT} = \frac{1}{2u^{2}} \left[4m^{2}s + ut + \sqrt{s(4m^{2}-u)(4m^{2}s + ut)} \right]$$

▶ Return

Mappings: S-I

Solution

$$P_i = (1-z) p_i + z p_{i+2} \mod 4$$

transf. invariants

$$M_{i}^{2} = z(1-z)u, \ S = (1-2z)^{2}s, \ T = (1-2z)^{2}t, \ U = u$$

$$r = z^{2}-z$$

$$r_{AT} = \frac{1}{2u^{2}} \left[4m^{2}s + ut + \sqrt{s(4m^{2}-u)(4m^{2}s + ut)} \right]$$

Mappings: II

Mappings: S-IIa

Solution

$$P_i = p_i + (-1)^i (p_1 + p_3) z$$

$$M_{i}^{2} = ur, S = s, T = t, U = (1 + 4r)u$$

$$r = z^{2} - z$$

$$r_{AT} = \frac{1}{2u^{2}} \left[4m^{2}u + \sqrt{u^{2}(4m^{2} - s)(4m^{2} - t)} \right]$$

unphysical, $P_{ij}^2 \notin R_{phys}$ requires $s < 4 m^2$

Mappings: S-IIb

Solution

$$P_{1,4} = p_{1,4} + (p_1 + p_2) z, \quad P_{2,3} = p_{2,3} - (p_1 + p_2) z,$$

$$M_{1,3}^2 = z(z+1)s \quad M_{2,4}^2 = z(z-1)s$$

$$S = s, \quad U = u, \quad T = (1+4z^2)t$$

$$z_{AT}^2 = \frac{1}{2} \left[1 - \frac{1}{s} \sqrt{u(4m^2 - s)} \right]$$

unphysical, $P_{ij}^2 \not\in R_{\text{phys}}$

requires $s > 4 m^2$ and $u < 4 m^2 - s$

▶ Return

General solution for D

If \exists a diagram \overline{D} , a transformation \overline{T}

$$\overline{D}(z) = \overline{T}(z)\overline{D}, \quad \overline{T}(0) = I, \quad \overline{D}(z_{\scriptscriptstyle AT}) \text{ singular } z_{\scriptscriptstyle AT} \in R$$

Map D

$$\begin{array}{rcl} D & \to & D(z, z_{AT}) \\ D(z, z_{AT}) & = & T_1(z, z_{AT}) \ D + T_2(z, z_{AT}) \ \overline{D}(0) \\ T_1(0, z_{AT}) & = & I, \quad T_2(0, z_{AT}) = 0 \\ T_1(z_{AT}, z_{AT}) & = & 0, \quad T_2(z_{AT}, z_{AT}) = I \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

General solution for D

If \exists a diagram \overline{D} , a transformation \overline{T}

$$\overline{D}(z) = \overline{T}(z)\overline{D}, \quad \overline{T}(0) = I, \quad \overline{D}(z_{\scriptscriptstyle AT}) \text{ singular } z_{\scriptscriptstyle AT} \in R$$

Map D

$$\begin{array}{rcl} D & \to & D(z,z_{AT}) \\ D(z,z_{AT}) & = & T_1(z,z_{AT}) \ D + T_2(z,z_{AT}) \ \overline{D}(0) \\ T_1(0,z_{AT}) & = & I, \quad T_2(0,z_{AT}) = 0 \\ T_1(z_{AT},z_{AT}) & = & 0, \quad T_2(z_{AT},z_{AT}) = I \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Solution for direct box $gggg \rightarrow 0$

Derive $(T_1 \oplus T_2) \otimes \overline{T}$

$$P_{i} = \left[f_{1} + f_{2} (1 - z_{AT})\right] p_{i} + f_{2} z_{AT} p_{i+2}, \mod 4$$

$$f_{1} = 1 - \frac{z}{z_{AT}} \qquad f_{2} = 1 - f_{1}$$

Or

) direct box \rightarrow crossed box

crossed box \rightarrow singular crossed box

Solution for direct box $gggg \rightarrow 0$

Derive $(T_1 \oplus T_2) \otimes \overline{T}$

$$P_{i} = \left[f_{1} + f_{2} (1 - z_{AT})\right] p_{i} + f_{2} z_{AT} p_{i+2}, \mod 4$$

$$f_{1} = 1 - \frac{z}{z_{AT}} \qquad f_{2} = 1 - f_{1}$$

Or

• direct box \rightarrow crossed box

2 crossed box \rightarrow singular crossed box

Solution for $gg\overline{t}t \rightarrow 0$

Requires shift on internal masses

$$p \rightarrow P = T_p(z) p \text{ and } m \rightarrow M = T_m(z) m$$

$$P_{1} = (1-z)p_{1} + z\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{2} = (1-z)p_{2} + z\left(p_{4} - \frac{z}{z_{AT}}K\right)$$
$$P_{3} = zp_{1} + (1-z)\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{4} = zp_{2} + (1-z)\left(p_{4} - \frac{z}{z_{AT}}K\right)$$

 T_m

$$T_m = \operatorname{diag}\left(\frac{z}{z_{AT}}, \frac{z}{z_{AT}}, 1, 1\right)$$
$$K_\mu = k \epsilon \left(\mu, \rho_1, \rho_2, \rho_3\right) \quad k^2 = -4 \frac{m}{s} \left[s t + \left(t - m^2\right)^2\right]^{-1}$$

Solution for $gg\overline{t}t \rightarrow 0$

Requires shift on internal masses

$$ho o P = T_
ho(z) \,
ho$$
 and $m o M = T_m(z) \, m$

Tp

$$P_{1} = (1-z)p_{1} + z\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{2} = (1-z)p_{2} + z\left(p_{4} - \frac{z}{z_{AT}}K\right)$$
$$P_{3} = zp_{1} + (1-z)\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{4} = zp_{2} + (1-z)\left(p_{4} - \frac{z}{z_{AT}}K\right)$$

Tm

$$T_m = \text{diag}\left(\frac{z}{z_{AT}}, \frac{z}{z_{AT}}, 1, 1\right)$$

$$K_\mu = k \epsilon (\mu, p_1, p_2, p_3) \quad k^2 = -4 \frac{m}{s} \left[s t + \left(t - m^2\right)^2\right]^{-1}$$

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3} (i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2 zs \left[D_{0}(2) + D_{0}(4) \right] + \text{triangles}$$

$\mathsf{IBP} ightarrow$

$$D_0(i) = M_{ij}^{-1} d_j \quad \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3} (i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2 zs \left[D_{0}(2) + D_{0}(4) \right] + \text{triangles}$$

$\mathsf{IBP} ightarrow$

$$D_0(i) = M_{ij}^{-1} d_j \quad \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3} (i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2 zs \left[D_{0}(2) + D_{0}(4) \right] + \text{triangles}$$

$\mathsf{IBP} \rightarrow$

$$D_0(i) = M_{ij}^{-1} d_j \quad \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in $r = z^2 - z$

$$\frac{d}{dr} D_0(r) = C_4^{-1}(r) \left[X(r) D_0(r) + D_{\text{rest}}(r) \right]$$

where C_4 is the Caley determinant.

We have

$$\frac{d}{dr} C_4 = -2 X(r) \quad \rightsquigarrow$$
$$D_0(r) = \frac{D_{\text{sing}}}{(r - r_{AT})^{1/2}} + D_{\text{reg}}(r)$$

ODE in $r = z^2 - z$

$$\frac{d}{dr} D_0(r) = C_4^{-1}(r) \left[X(r) D_0(r) + D_{\text{rest}}(r) \right]$$

where C_4 is the Caley determinant.

We have

$$\frac{d}{dr} C_4 = -2 X(r) \quad \rightsquigarrow$$
$$D_0(r) = \frac{D_{\text{sing}}}{(r - r_{AT})^{1/2}} + D_{\text{reg}}(r)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

ODE for $H \rightarrow gg$; I

Amplitude

There is one form factor F_D that can be written, without reduction, as $F_D = \sum_i F_i$

$$F_{1} = \frac{1}{2} \int d^{n}q \frac{M_{H}^{2} - 2m_{t}^{2}}{(0)(1)(2)} \quad F_{2} = -2 \int d^{n}q \frac{q \cdot p_{1}}{(0)(1)(2)}$$
$$(n-2) F_{3} = \int \frac{d^{n}q}{(0)(1)(2)} \left[(6-n) q^{2} + \frac{16}{M_{H}^{2}} q \cdot p_{1}q \cdot p_{2} \right]$$

Mapping

A mapping is needed; suppose that $M_{_{H}}^2 < 4 m_{_{H}}^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

ODE for $H \rightarrow gg$; I

Amplitude

There is one form factor F_D that can be written, without reduction, as $F_D = \sum_i F_i$

$$F_{1} = \frac{1}{2} \int d^{n}q \frac{M_{H}^{2} - 2m_{t}^{2}}{(0)(1)(2)} \quad F_{2} = -2 \int d^{n}q \frac{q \cdot p_{1}}{(0)(1)(2)}$$
$$(n-2) F_{3} = \int \frac{d^{n}q}{(0)(1)(2)} \left[(6-n) q^{2} + \frac{16}{M_{H}^{2}} q \cdot p_{1}q \cdot p_{2} \right]$$

Mapping

A mapping is needed; suppose that $M_{\mu}^2 < 4 m_t^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

ODE for $H \rightarrow gg$; **II**

Mapping $p_{1,2} \rightarrow P_{1,2}$

Т

$$= \begin{pmatrix} z & 1-z \\ 1-z & z \end{pmatrix} \qquad \qquad B \rightarrow M_{H}^{2} \frac{C}{C}$$

$$C = r^2 + \mu_t^2 (1 + 4r) \quad G = -\frac{1}{4} M_H^2 (1 + 4r)$$

$$r = z (z - 1)$$
 and $\mu_t^2 M_{\mu}^2 = m_t^2$

ODE for $H \rightarrow gg$; III

Solution

$$r_{AT} = -2\mu_t^2 \left[1 + \sqrt{1 - \frac{1}{4\mu_t^2}} \right]$$
$$-\infty < r_{AT} < -\frac{1}{2}$$

Solution for

the amplitude is needed at r = 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ODE for $H \rightarrow gg$; **III**

Solution

$$r_{AT} = -2\mu_t^2 \left[1 + \sqrt{1 - \frac{1}{4\mu_t^2}}\right]$$
$$-\infty < r_{AT} < -\frac{1}{2}$$

Solution for

the amplitude is needed at r = 0

ODE for $H \rightarrow gg$; **IV**

Less simple but non-singular (in *R*)

$$T_{p} = \left(egin{array}{cccc} 1-z & z & 0 \ 0 & 1-z & z \ z & 0 & 1-z \end{array}
ight)$$

$$M_i^2 = \left(1 - rac{z}{z_{AT}}\right) m^2 + rac{z}{z_{AT}} \overline{M}_i^2$$

M_i free parameters to satisfy

$$P_1^2 < (M_1 + M_2)^2 P_2^2 > (M_2 - M_3)^2$$

 $(P_1 + P_2)^2 < (M_1 + M_3)^2$

・ ロ ア ・ 雪 ア ・ 雪 ア ・ 日 ア

.....

ODE for $H \rightarrow gg$; **IV**

Less simple but non-singular (in R)

$$T_{p} = \left(egin{array}{cccc} 1-z & z & 0 \ 0 & 1-z & z \ z & 0 & 1-z \end{array}
ight)$$

$$M_i^2 = \left(1 - \frac{z}{z_{AT}}\right) m^2 + \frac{z}{z_{AT}} \overline{M}_i^2$$

\overline{M}_i free parameters to satisfy

$$\begin{array}{rcl} P_1^2 & < & (M_1+M_2)^2 & P_2^2 > (M_2-M_3)^2 \\ (P_1+P_2)^2 & < & (M_1+M_3)^2 \end{array}$$

ODE for $H \rightarrow gg$; **V**

System of ODE

$$\frac{d}{dr}F_i = X_{ij}F_j + Y_j, \quad X, Y \text{ from IBP}$$

Trading
$$F_3$$
 for $F_D \sim$

$$\frac{d}{dr}F_{D} - X_{33}F_{D} + \left(X_{33} - \sum_{i}X_{i1}\right)F_{1} + (X_{33} - X_{22})F_{2} = \sum_{i}Y_{i1}$$

ODE for $H \rightarrow gg$; **V**

System of ODE

$$\frac{d}{dr}F_i = X_{ij}F_j + Y_j, \quad X, Y \text{ from IBP}$$

Trading
$$F_3$$
 for $F_D \sim$

$$\frac{d}{dr} F_D - X_{33} F_D + \left(X_{33} - \sum_i X_{i1}\right) F_1 + (X_{33} - X_{22}) F_2 = \sum_i Y_i$$
etc.

ODE for $H \rightarrow gg$; VI

Boundary conditions at AT (factorization)

$$F_{1} \sim \frac{1}{2} \left(M_{H}^{2} - 2 m_{t}^{2} \right) C_{0}^{\text{sing}} (z_{AT})$$

$$F_{2} \sim M_{H}^{2} z_{AT} C_{0}^{\text{sing}} (z_{AT})$$

$$F_{D} \sim \left[\frac{M_{H}^{2}}{8} (1 + 6 r_{AT}) - m_{t}^{2} (1 + 4 r_{AT}) \right] C_{0}^{\text{sing}} (z_{AT})$$

・ロト・日本・山田・ 山田・ 山口・

ODE for $H \rightarrow gg$; **VII**

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$
$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

$$g(z_{\text{AT}}) = \frac{2\pi i}{M_{\text{H}}^2}\beta(z_{\text{AT}}) \quad \beta^2(r) = 1 - 4\frac{\mu_t^2}{r}$$

the regular part h(r) is computed numerically

-

ODE for $H \rightarrow gg$; VII

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$
$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

$$g(z_{AT}) = \frac{2\pi i}{M_{H}^2}\beta(z_{AT}) \quad \beta^2(r) = 1 - 4\frac{\mu_t^2}{r}$$

the regular part h(r) is computed numerically

200

-

ODE for $H \rightarrow gg$; **VII**

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$
$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

$$g(z_{AT}) = \frac{2\pi i}{M_H^2}\beta(z_{AT}) \quad \beta^2(r) = 1 - 4\frac{\mu_t^2}{r}$$

the regular part h(r) is computed numerically

a a

General strategy, e.g. for N = 4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = c D such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

General strategy, e.g. for N = 4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = c D such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

- コット (雪) (日) (日)

General strategy, e.g. for N = 4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = c D such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

• with
$$m = 1, p^2 = x$$
 shift $x \to z x$

$$x z (x z + 1) (x z + 9) \frac{d^2}{dz^2} S(x, z) =$$

$$P(x, z) \frac{d}{dz} S(x, z) + Q(x, z) S(x, z) + R(x, z)$$

AT solution

 $z_{AT} = -x^{-1}$ (Warning: AT = pseudo-threshold); for different masses, map

$$m_i \rightarrow M_i = \frac{z - z_{AT}}{1 - z_{AT}} m_i + \frac{1 - z}{1 - z_{AT}} m_i$$

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

• with
$$m = 1, p^2 = x$$
 shift $x \to z x$

$$x z (x z + 1) (x z + 9) \frac{d^2}{dz^2} S(x, z) =$$

P(x, z) $\frac{d}{dz} S(x, z) + Q(x, z) S(x, z) + R(x, z)$

AT solution

 $z_{AT} = -x^{-1}$ (Warning: AT = pseudo-threshold); for different masses, map

$$m_i \rightarrow M_i = \frac{z - z_{AT}}{1 - z_{AT}} m_i + \frac{1 - z}{1 - z_{AT}} m_i$$

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

In LL04 I mentioned the word anomalous threshold, Peter Zerwas told me 'that shows your age' perhaps he was wrong ... perhaps not ... but then others will fall away ...

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

In LL04 I mentioned the word anomalous threshold, Peter Zerwas told me 'that shows your age' perhaps he was wrong ... perhaps not ... but then others will fall away ...