It's Simpler to be Singular

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy HEPTOOLS Network

LL08, Sonderhausen, April 2008

Based on work done in collaboration with Stefano Goria Discussions with Ansgar Denner and Stefan Dittmaier are acknowledged.

Outlines

Outlines

Outlines

$(1,2)$
(1) From the analytical structure of Feynman diagrams
(2)
to their numerical evaluation
what else, but the inevitable!

Outlines

$(1,2$,
(1) From the analytical structure of Feynman diagrams
(2) to their numerical evaluation
what else, but the inevitable!

Part I

Intermezzo

A complete two-loop calculation

Oooops ... $H \rightarrow \gamma \gamma, g g \sim$

This is what I should have been talking about
S. Actis, C. Sturm, S. Uccirati and myself (≈ 10 kilohour)

Part II

Sonata form

A celebrated result with too many fathers

Theorem

$$
\sum \quad \begin{aligned}
&\left.\sum \text { 1-loop n-legs Feynman diagrams }\right\}= \\
& \sum_{\mathcal{D}} B_{\mathcal{D}} D_{0}\left(P_{1}^{\mathcal{D}}, \ldots, P_{4}^{\mathcal{D}}\right)+\cdots
\end{aligned}
$$

\mathcal{D} partition of $\{1 \ldots n\}$ into 4 non-empty sets P_{i}^{D} sum of momenta in $i \in \mathcal{D}$

Bases are bases, and troubles are troubles

Scalar one-loop integrals

form a basis. Thus, coefficients are uniquely determined, although some method can be more efficient than others in their determination. However, troublesome points will always be there (Denner-Dittmaier anathema). What to do?

- Change (adapt) bases?
- Avoid bases (expansion)?
- Rethinking necessary.

Part III

Factorization of Feynman amplitudes

Factorization

Any Feynman diagram

is particularly simple when evaluated around its anomalous threshold.

Kershaw theorem (1972)

The singular part of a scattering amplitude around its leading Landau singularity may be written as an algebraic product of the scattering amplitudes for each vertex of the corresponding Landau graph times a certain explicitly determined singularity factor which depends only on the type of singularity (triangle graph, box graph, etc.) and on the masses and spins of the internal particles.

One-loop, multi-legs

Define

scalar one-loop N-leg integral in n-dimensions as

$$
\begin{aligned}
S_{n ; N} & =\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0, N-1}(i)} \\
(i) & =\left(q+k_{0}+\cdots+k_{i}\right)^{2}+m_{i}^{2}
\end{aligned}
$$

Use N-simplex

$$
\int d S_{N}=\prod_{i=1}^{N} \int_{0}^{x_{i-1}} d x_{i}, \quad x_{0}=1
$$

One-loop, multi-legs II

In parametric space we get

$$
S_{n N}=\left(\frac{\mu^{2}}{\pi}\right)^{2-n / 2} \Gamma\left(N-\frac{n}{2}\right)[N]_{n} .
$$

Example

$$
[N]_{n}=\int d S_{N-1} V_{N}^{n / 2-N},
$$

with

$$
V_{N}=x^{t} H_{N} x+2 K_{N}^{t} x+L_{N}, \quad X_{N}=-K_{N}^{t} H_{N}^{-1} .
$$

One-loop, multi-legs II

In parametric space we get

$$
S_{n N}=\left(\frac{\mu^{2}}{\pi}\right)^{2-n / 2} \Gamma\left(N-\frac{n}{2}\right)[N]_{n} .
$$

Example

$$
[N]_{n}=\int d S_{N-1} V_{N}^{n / 2-N},
$$

with

$$
V_{N}=x^{t} H_{N} x+2 K_{N}^{t} x+L_{N}, \quad X_{N}=-K_{N}^{t} H_{N}^{-1} .
$$

One-loop, multi-legs II

In parametric space we get

$$
S_{n N}=\left(\frac{\mu^{2}}{\pi}\right)^{2-n / 2} \Gamma\left(N-\frac{n}{2}\right)[N]_{n} .
$$

Example

$$
[N]_{n}=\int d S_{N-1} V_{N}^{n / 2-N}
$$

with

$$
V_{N}=X^{t} H_{N} X+2 K_{N}^{t} X+L_{N} \quad X_{N}=-K_{N}^{t} H_{N}^{-1}
$$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

Caley (determinant)

$$
B_{N}=L_{N}-K_{N}^{t} H_{N}^{-1} K_{N}
$$

Gram (determinant)

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$
B_{N}=L_{N}-K_{N}^{t} H_{N}^{-1} K_{N}
$$

Caley (determinant)

Gram (determinant)

$$
H_{i j}=-k_{i} \cdot k_{j} \quad G=\operatorname{det} H
$$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$
B_{N}=L_{N}-K_{N}^{t} H_{N}^{-1} K_{N}
$$

Gram (determinant)

$$
H_{i j}=-k_{i} \cdot k_{j} \quad G=\operatorname{det} H
$$

$$
M=\left(\begin{array}{ll}
H_{N} & K_{N} \\
K_{N}^{t} & L_{N}
\end{array}\right)
$$

One-loop, multi-legs IV

It follows

$B=C / G$, where $C=\operatorname{det} M$ is the so-called modified Cayley determinant of the diagram.

LS as pinches (masses \& invariants $\in R$)
$V_{N}=\left(x-X_{N}\right)^{t} H\left(x-X_{N}\right)+B_{N}$

No discussion of the complex part of singular surface

$B_{N}=0$ induces a pinch on the integration contour at the point of coordinates $x=X_{N}$; therefore, if the conditions,

$$
B_{N}=0, \quad 0<X_{N, N-1}<\ldots<X_{N, 1}<1,
$$

are satisfied we will have the leading singularity of the diagram.

Why to avoid Gramºr

A common wisdom, but?

- The vanishing of the Gram determinant is the condition for the occurence of non-Landau singularities, connected with the distorsion of the integration contour to infinity;
- furthermore, for complicated diagrams, there may be pinching of Landau $(C=0)$ and non-Landau singularities ($G=0$), giving rise to a non-Landau singularity whose position depends upon the internal masses (so-called D^{2} wild points).

AT and factorization

It follows:

- Given the above properties the factorization of Kershaw theorem follows.
- The beauty of being at the anomalous threshold is that everything is frozen and the amplitude factorizes.
- But, what to do with a point?
- It looks perfect for boundary conditions, as long as we can reach it. Alternative: expand \& match residues at a given AT (Cachazo 2008).

Standard reduction vs modern techniques

Example

$$
\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{q \cdot p_{1}}{\prod_{i=0,3}(i)}=\sum_{i=1}^{3} D_{1 i} p_{1} \cdot p_{i}=-\sum_{i=1}^{3} D_{1 i} H_{1 i} .
$$

carefull application of the method

$$
D_{1 i}=-\frac{1}{2} H_{i j}^{-1} d_{j}, \quad d_{i}=D_{0}^{(i+1)}-D_{0}^{(i)}-2 K_{i} D_{0},
$$

where $D_{0}^{(i)}$ is the scalar triangle obtained by removing propagator i from the box.

Standard reduction vs modern techniques II

Therefore we obtain

$$
\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{q \cdot p_{1}}{\prod_{i=0,3}(i)}=\frac{1}{2} \sum_{i, j=1}^{3} H_{i j}^{-1} H_{1 i} d_{j}=\frac{1}{2} d_{1}
$$

(no G_{3}). Furthermore, the coefficient of D_{0} in the reduction is

$$
\frac{1}{2}\left(m_{0}^{2}-m_{1}^{2}-p_{1}^{2}\right)
$$

(General feature of tensor- $N \rightarrow$ scalar- N)

Standard reduction vs modern techniques III

Theorem

At the leading Landau singularity of the box we must have

$$
q^{2}+m_{0}^{2}=0, \quad\left(q+p_{1}\right)^{2}+m_{1}^{2}=0, \quad \text { etc. }
$$

Therefore

the coefficient of D_{0} is fixed by

$$
\left.2 q \cdot p_{1}\right|_{A T}=m_{0}^{2}-m_{1}^{2}-p_{1}^{2}
$$

which is what a careful application of SR gives. Note that one gets the coeff. without having to require a physical singularity.

From hexagons up: factorization at SubLeadingLandau ... Landshoff

Sunny-side up of factorization

Progress

- At least in one point we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region $R_{\text {phys }}$ (support of $\Delta^{ \pm}$in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even
with invariants $\notin R_{\text {phys }}$ implies a frozen q.

Sunny-side up of factorization

Progress

- At least in one point we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region $R_{\text {phys }}$ (support of $\Delta^{ \pm}$in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even with invariants $\notin R_{\text {phys }}$, implies a frozen q.

Generalized factorization I

Define

$$
\text { if } \frac{1}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0, N-1}(i)} \quad \text { is singular at } x=X \in R
$$

Then (example)

Generalized factorization I

Define

$$
\text { if } \frac{1}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0, N-1}(i)} \quad \text { is singular at } x=X \in R
$$

Then (example)

$$
\begin{aligned}
\frac{1}{i \pi^{2}} \int d^{n} q \frac{q \cdot p_{l}}{\prod_{i=0, N-1}(i)} & =-\sum_{i=1}^{N}[N]_{n}(i) p_{l} \cdot p_{i} \\
\sum_{i=1}^{N}[N]_{n}(i) H_{l i} & \tilde{A T} \sum_{i=1}^{N}[N]_{n}(1) H_{l i} X_{i}=-K_{l}[N]_{n} .
\end{aligned}
$$

Generalized factorization I

Define

$$
\text { if } \frac{1}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0, N-1}(i)} \quad \text { is singular at } x=X \in R
$$

Then (example)

$$
\begin{aligned}
\frac{1}{i \pi^{2}} \int d^{n} q \frac{q \cdot p_{l}}{\prod_{i=0, N-1}(i)} & =-\sum_{i=1}^{N}[N]_{n}(i) p_{l} \cdot p_{i} \\
\sum_{i=1}^{N}[N]_{n}(i) H_{l i} & \tilde{A T} \sum_{i=1}^{N}[N]_{n}(1) H_{l i} X_{i}=-K_{l}[N]_{n} .
\end{aligned}
$$

Generalized factorization II

Where

$$
X_{i}=-K_{j} H_{j i}^{-1}, \quad H X=-K
$$

Factorization

At the AT all scalar products \rightarrow solution of

$$
\left(q+\cdots+p_{i}\right)^{2}+m_{i}^{2}, \quad i=0, \ldots, N-1 .
$$

Generalized factorization II

Where

$$
X_{i}=-K_{j} H_{j i}^{-1}, \quad H X=-K
$$

Factorization

At the AT all scalar products \rightarrow solution of

$$
\left(q+\cdots+p_{i}\right)^{2}+m_{i}^{2}, \quad i=0, \ldots, N-1 .
$$

Generalized factorization II

Where

$$
X_{i}=-K_{j} H_{j i}^{-1}, \quad H X=-K
$$

\leadsto Factorization

At the AT all scalar products \rightarrow solution of

$$
\left(q+\cdots+p_{i}\right)^{2}+m_{i}^{2}, \quad i=0, \ldots, N-1 .
$$

Part IV

More on the AT

How frequent is AT in your calculation?

For $N=4$ there are 14 branches in p-(real) space,
$p_{i}^{0}>0, p_{k}^{0}<0$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}>\left(m_{i}-m_{j}\right)^{2}, M_{k}^{2}<\left(m_{j}+m_{k}\right)^{2}, M_{l}^{2}<\left(m_{k}-m_{l}\right)^{2}
$$

How frequent is AT in your calculation?

For $N=4$ there are 14 branches in p-(real) space,

$$
p_{i}^{0}>0, p_{k}^{0}<0
$$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}>\left(m_{i}-m_{j}\right)^{2}, M_{k}^{2}<\left(m_{j}+m_{k}\right)^{2}, M_{l}^{2}<\left(m_{k}-m_{l}\right)^{2}
$$

$p_{i}^{0}>0, p_{j}^{0}<0$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}<\left(m_{i}+m_{j}\right)^{2}, M_{k}^{2}>\left(m_{j}-m_{k}\right)^{2}, M_{l}^{2}>\left(m_{k}-m_{l}\right)^{2}
$$

How frequent is AT in your calculation?

For $N=4$ there are 14 branches in p-(real) space,

$$
p_{i}^{0}>0, p_{k}^{0}<0
$$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}>\left(m_{i}-m_{j}\right)^{2}, M_{k}^{2}<\left(m_{j}+m_{k}\right)^{2}, M_{l}^{2}<\left(m_{k}-m_{l}\right)^{2},
$$

$p_{i}^{0}>0, p_{j}^{0}<0$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}<\left(m_{i}+m_{j}\right)^{2}, M_{k}^{2}>\left(m_{j}-m_{k}\right)^{2}, M_{l}^{2}>\left(m_{k}-m_{l}\right)^{2}
$$

$$
p_{i}^{0}>0, p_{j}^{0}<0, p_{k}^{0}>0, p_{I}^{0}<0
$$

$$
M_{i}^{2}<\left(m_{i}+m_{l}\right)^{2}, M_{j}^{2}<\left(m_{i}+m_{j}\right)^{2}, M_{k}^{2}<\left(m_{j}+m_{k}\right)^{2}, M_{l}^{2}<\left(m_{k}+m_{l}\right)^{2}
$$

It's easier with Coleman - Norton

In $2 \rightarrow 2$ two unstable particles $\in \mid$ in $>$ are needed!

Example for pentagon

time \rightarrow

AT watch (ain't a tornado but)

For those who don't want an AT in their MC, beware of

AT watch II (Denner's devil)

Hexagons don't count but pentagons \leftarrow hexagons do!

Expansion around AT

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition
e.g. $\operatorname{Im} C_{0}$ has a log singularity, $\operatorname{Re} C_{0}$ has a discontinuity \dagger) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Expansion around AT

Expansion around AT

of Feynman integrals is easy
to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition
e.g. $\operatorname{Im} C_{0}$ has a log singularity, $\operatorname{Re} C_{0}$ has a discontinuity \dagger) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Expansion around AT

Expansion around AT

of Feynman integrals is easy
to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior ${ }^{\dagger}$

- $C_{0} \sim \ln B_{3}$;
- $D_{0} \sim B_{4}^{-1 / 2}$;
- $E_{0} \sim B_{5}^{-1}$;
- F_{0} none in 4 d .
e.g. Im C_{0} has a log singularity, $\operatorname{Re} C_{0}$ has a discontinuity \dagger) NO IR/coll configuration, otherwise enhancement of singular behavior (in the residues of IR/coll poles).

Non integrable pentagon singularity?

Problem

pentagon \rightarrow non-integrable pole

Solutions?

a spin + gauge cancellations
(2) unstable particles complex masses

Preliminar

a simple examples \rightarrow not the case
(2) unitarity?
(3) for integ. sing average over a Breit-Wigner of the invariant mass of
unstable ext particles

Non integrable pentagon singularity?

Problem

pentagon \rightarrow non-integrable pole

Solutions?

(1) spin + gauge cancellations
(2) unstable particles \rightarrow complex masses

Preliminar

- simple examples \rightarrow not the case
(2) unitarity?
(3) for intea. sing. average
over a Breit-Wigner of
the invariant mass of
unstable ext particles

Non integrable pentagon singularity?

Problem

pentagon \rightarrow non-integrable pole

Solutions?

© spin + gauge cancellations
(2) unstable particles \rightarrow complex masses

Preliminar

(1) simple examples \rightarrow not the case
(2) unitarity?
(3) for integ. sing. average over a Breit-Wigner of the invariant mass of unstable ext particles

Part V

Differential equations

Differential equations, Regge Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;

Advantages

- real momenta ${ }^{\dagger}$;
- one boundary condition.

Requires

- the right variable
†) $p \in C$ means $\mathrm{SL}(2, C) \otimes \mathrm{SL}(2, C) \rightarrow$ double cover of $\mathrm{SO}(3,1)$

Differential equations, Regge ... Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;

Advantages

- no reduction;
- real momenta ${ }^{\dagger}$;
- one boundary condition.

Requires

- the right variable
†) $p \in C$ means $\mathrm{SL}(2, C) \otimes \mathrm{SL}(2, C) \rightarrow$ double cover of $\mathrm{SO}(3,1)$

Differential equations, Regge ... Kotikov Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta ${ }^{\dagger}$;
- one boundary condition.

Advantages

- no reduction;
- extedibility to higher loops.

Requires

- the right variable
†) $p \in C$ means $\mathrm{SL}(2, C) \otimes \mathrm{SL}(2, C) \rightarrow$ double cover of $\mathrm{SO}(3,1)$

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!
Howeverhomogeneous (compatible) systems of nth-order PDE are easyto derive, a fact that has to do with the hypergeometriccharacter of one-loop diagrams.

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy to derive, a fact that has to do with the hypergeometric character of one-loop diagrams.

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)
to write one-loop diagrams as

$$
F\left(z_{1}, \ldots, z_{m}\right)=\sum_{\left\{n_{i}\right\}} A\left(n_{1}, \ldots, n_{m}\right) \prod_{i} \frac{z_{i}^{n_{i}}}{n_{i}!}
$$

Since

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)
to write one-loop diagrams as

$$
F\left(z_{1}, \ldots, z_{m}\right)=\sum_{\left\{n_{i}\right\}} A\left(n_{1}, \ldots, n_{m}\right) \prod_{i} \frac{z_{i}^{n_{i}}}{n_{i}!}
$$

Since

$$
\frac{A\left(\ldots, n_{i}+1, \ldots\right)}{A\left(\ldots, n_{i}, \ldots\right)}=\frac{P_{i}\left(\left\{n_{i}\right\}\right)}{Q_{i}\left(\left\{n_{i}\right\}\right)}=\frac{\text { fin. pol. }}{\text { fin. pol. }}
$$

Hypergeometry of Feynman integrals

Then

$$
\left[Q_{i}\left(\left\{z_{i} \frac{\partial}{\partial z_{i}}\right\}\right) z_{i}^{-1}-P_{i}\left(\left\{z_{i} \frac{\partial}{\partial z_{i}}\right\}\right)\right] F=0 .
$$

With, e.g. for $N=4$ ($N=5 P, Q$ are of third order)

$P_{i j}=\left(n_{i}+1\right)\left(n_{j}+1\right), \quad n_{i}=\sum n_{i j}+\sum n_{j i}$

Hypergeometry of Feynman integrals

Then

$$
\left[Q_{i}\left(\left\{z_{i} \frac{\partial}{\partial z_{i}}\right\}\right) z_{i}^{-1}-P_{i}\left(\left\{z_{i} \frac{\partial}{\partial z_{i}}\right\}\right)\right] F=0 .
$$

With, e.g. for $N=4$ ($N=5 P, Q$ are of third order)

$$
\begin{aligned}
s_{i j} & =-\left(p_{i}+\ldots+p_{j-1}\right)^{2} \quad z_{i j}=\frac{s_{i j}-\left(m_{i}-m_{j}\right)^{2}}{4 m_{i} m_{j}} \\
P_{i j} & =\left(n_{i}+1\right)\left(n_{j}+1\right), \quad n_{i}=\sum_{j>i} n_{i j}+\sum_{j<i} n_{j i} \\
Q_{i j} & =\left(n_{i j}+1\right)\left(n+\frac{5}{2}\right), \quad n=\sum_{i<j} n_{i j}
\end{aligned}
$$

Diffeomorphisms of Feynman diagrams

$$
P_{i}(z)=T_{i j}(z) p_{j}, \text { with } \sum P_{i}=\sum p_{i}=0, \quad T_{i j}(0)=\delta_{i j}
$$

Classification

M \rightarrow physical

- maps $D(0)$ into $D(z)$ which is singular at $z_{A T} \in R$

$$
s_{i j} \rightarrow S_{i j}(z) \in \text { Phys }_{z}
$$

- no restriction on $s_{i j}$
unphysical
- maps $D(0)$ into $D(z)$ which is singular at $z_{A T} \in R$

Classification

M \rightarrow physical

- maps $D(0)$ into $D(z)$ which is singular at $z_{A T} \in R$

$$
s_{i j} \rightarrow S_{i j}(z) \in \operatorname{Phys}_{z}
$$

- no restriction on $s_{i j}$

M \rightarrow unphysical

- maps $D(0)$ into $D(z)$ which is singular at $z_{A T} \in R$

$$
s_{i j} \rightarrow S_{i j}(z) \notin \text { Phys }_{z}
$$

- restriction on $s_{i j}$

Mappings: I

щ- massless

Mappings: S-I

Solution

$$
P_{i}=(1-z) p_{i}+z p_{i+2} \bmod 4
$$

transf. invariants

$$
\begin{aligned}
M_{i}^{2} & =z(1-z) u, S=(1-2 z)^{2} s, T=(1-2 z)^{2} t, U=u \\
r & =z^{2}-z \\
r_{A T} & =\frac{1}{2 u^{2}}\left[4 m^{2} s+u t+\sqrt{s\left(4 m^{2}-u\right)\left(4 m^{2} s+u t\right)}\right]
\end{aligned}
$$

Mappings: S-I

Solution

$$
P_{i}=(1-z) p_{i}+z p_{i+2} \bmod 4
$$

transf. invariants

$$
\begin{aligned}
M_{i}^{2} & =z(1-z) u, S=(1-2 z)^{2} s, T=(1-2 z)^{2} t, U=u \\
r & =z^{2}-z \\
r_{A T} & =\frac{1}{2 u^{2}}\left[4 m^{2} s+u t+\sqrt{s\left(4 m^{2}-u\right)\left(4 m^{2} s+u t\right)}\right]
\end{aligned}
$$

Mappings: II

Mappings: S-lla

Solution

$$
\begin{aligned}
& P_{i}=p_{i}+(-1)^{i}\left(p_{1}+p_{3}\right) z \\
& M_{i}^{2}= u r, S=s, T=t, U=(1+4 r) u \\
& r= z^{2}-z \\
& r_{A T}= \frac{1}{2 u^{2}}\left[4 m^{2} u+\sqrt{u^{2}\left(4 m^{2}-s\right)\left(4 m^{2}-t\right)}\right]
\end{aligned}
$$

unphysical, $P_{i j}^{2} \notin R_{\text {phys }}$ requires $s<4 m^{2}$

Mappings: S-IIb

Solution

$$
\begin{aligned}
P_{1,4}=p_{1,4} & +\left(p_{1}+p_{2}\right) z, \quad P_{2,3}=p_{2,3}-\left(p_{1}+p_{2}\right) z \\
M_{1,3}^{2} & =z(z+1) s \quad M_{2,4}^{2}=z(z-1) s \\
S & =s, \quad U=u, \quad T=\left(1+4 z^{2}\right) t \\
z_{A T}^{2} & =\frac{1}{2}\left[1-\frac{1}{s} \sqrt{u\left(4 m^{2}-s\right)}\right]
\end{aligned}
$$

unphysical, $P_{i j}^{2} \notin R_{\text {phys }}$
requires $s>4 m^{2}$ and $u<4 m^{2}-s$

- Return

General solution for D

If \exists a diagram \bar{D}, a transformation \bar{T}

$$
\bar{D}(z)=\bar{T}(z) \bar{D}, \quad \bar{T}(0)=I, \quad \bar{D}\left(z_{A T}\right) \text { singular } z_{A T} \in R
$$

Map D

General solution for D

If \exists a diagram \bar{D}, a transformation \bar{T}

$$
\bar{D}(z)=\bar{T}(z) \bar{D}, \quad \bar{T}(0)=I, \quad \bar{D}\left(z_{A T}\right) \text { singular } z_{A T} \in R
$$

Map D

$$
\begin{aligned}
D & \rightarrow D\left(z, z_{A T}\right) \\
D\left(z, z_{A T}\right) & =T_{1}\left(z, z_{A T}\right) D+T_{2}\left(z, z_{A T}\right) \bar{D}(0) \\
T_{1}\left(0, z_{A T}\right) & =I, \quad T_{2}\left(0, z_{A T}\right)=0 \\
T_{1}\left(z_{A T}, z_{A T}\right) & =0, \quad T_{2}\left(z_{A T}, z_{A T}\right)=I
\end{aligned}
$$

Solution for direct box gggg $\rightarrow 0$

Derive $\left(T_{1} \oplus T_{2}\right) \otimes \bar{T}$

$$
\begin{aligned}
P_{i} & =\left[f_{1}+f_{2}\left(1-z_{A T}\right)\right] p_{i}+f_{2} z_{A T} p_{i+2}, \quad \bmod 4 \\
f_{1} & =1-\frac{z}{z_{A T}} \quad f_{2}=1-f_{1}
\end{aligned}
$$

Or

(1) direct box \rightarrow crossed box
(2) crossed box \rightarrow singular crossed box

Solution for direct box gggg $\rightarrow 0$

Derive $\left(T_{1} \oplus T_{2}\right) \otimes \bar{T}$

$$
\begin{aligned}
P_{i} & =\left[f_{1}+f_{2}\left(1-z_{A T}\right)\right] p_{i}+f_{2} z_{A T} p_{i+2}, \quad \bmod 4 \\
f_{1} & =1-\frac{z}{z_{A T}} \quad f_{2}=1-f_{1}
\end{aligned}
$$

Or
(1) direct box \rightarrow crossed box
(2) crossed box \rightarrow singular crossed box

ggtt $\rightarrow 0$

چศ massless
_- massive

Solution for ggitt $\rightarrow 0$

Requires shift on internal masses

$$
p \rightarrow P=T_{p}(z) p \quad \text { and } \quad m \rightarrow M=T_{m}(z) m
$$

Solution for gg $\mathrm{t} t \rightarrow 0$

Requires shift on internal masses

$$
p \rightarrow P=T_{p}(z) p \quad \text { and } \quad m \rightarrow M=T_{m}(z) m
$$

T_{p}

$$
\begin{aligned}
& P_{1}=(1-z) p_{1}+z\left(p_{3}+\frac{z}{z_{A T}} k\right) \quad P_{2}=(1-z) p_{2}+z\left(p_{4}-\frac{z}{z_{A T}} K\right) \\
& P_{3}=z p_{1}+(1-z)\left(p_{3}+\frac{z}{z_{A T}} k\right) \quad P_{4}=z p_{2}+(1-z)\left(p_{4}-\frac{z}{z_{A T}} K\right)
\end{aligned}
$$

T_{m}

$$
\begin{aligned}
T_{m} & =\operatorname{diag}\left(\frac{z}{z_{A T}}, \frac{z}{z_{A T}}, 1,1\right) \\
K_{\mu} & =k \epsilon\left(\mu, p_{1}, p_{2}, p_{3}\right) k^{2}=-4 \frac{m}{s}\left[s t+\left(t-m^{2}\right)^{2}\right]^{-1}
\end{aligned}
$$

ODE in z with IBP

ODE for boxes

$$
\begin{aligned}
D_{0}(\{n\}) & =\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0,3}(i)^{n_{i}}}, \\
D_{0}(i) & =D_{0}(1, \ldots, 2, \ldots, 1) D_{0}=D_{0}(1, \ldots, 1) \\
\frac{d}{d z} D_{0} & =2 z s\left[D_{0}(2)+D_{0}(4)\right]+\text { triangles }
\end{aligned}
$$

IBP

$$
D_{0}(i)=M_{i j}^{-1} d_{j} \operatorname{det} M\left(z_{A T}\right)=0
$$

where d_{i} contains D_{0} or triangles.

ODE in z with IBP

ODE for boxes

$$
\begin{aligned}
D_{0}(\{n\}) & =\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0,3}(i)^{n_{i}}}, \\
D_{0}(i) & =D_{0}(1, \ldots, 2, \ldots, 1) D_{0}=D_{0}(1, \ldots, 1) \\
\frac{d}{d z} D_{0} & =2 z s\left[D_{0}(2)+D_{0}(4)\right]+\text { triangles }
\end{aligned}
$$

IBP

$$
D_{0}(i)=M_{i j}^{-1} d_{j} \operatorname{det} M\left(z_{A T}\right)=0
$$

where d_{i} contains D_{0} or triangles.

ODE in z with IBP

ODE for boxes

$$
\begin{aligned}
D_{0}(\{n\}) & =\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \frac{1}{\prod_{i=0,3}(i)^{n_{i}}}, \\
D_{0}(i) & =D_{0}(1, \ldots, 2, \ldots, 1) \quad D_{0}=D_{0}(1, \ldots, 1) \\
\frac{d}{d z} D_{0} & =2 z s\left[D_{0}(2)+D_{0}(4)\right]+\text { triangles }
\end{aligned}
$$

IBP \rightarrow

$$
D_{0}(i)=M_{i j}^{-1} d_{j} \quad \operatorname{det} M\left(z_{A T}\right)=0
$$

where d_{i} contains D_{0} or triangles.

ODE in $r=z^{2}-z$

ODE

$$
\frac{d}{d r} D_{0}(r)=C_{4}^{-1}(r)\left[X(r) D_{0}(r)+D_{\text {rest }}(r)\right]
$$

where C_{4} is the Caley determinant.

We have

ODE in $r=z^{2}-z$

ODE

$$
\frac{d}{d r} D_{0}(r)=C_{4}^{-1}(r)\left[X(r) D_{0}(r)+D_{\mathrm{rest}}(r)\right]
$$

where C_{4} is the Caley determinant．

We have

$$
\begin{aligned}
\frac{d}{d r} C_{4} & =-2 X(r) \leadsto \\
D_{0}(r) & =\frac{D_{\mathrm{sing}}}{\left(r-r_{A T}\right)^{1 / 2}}+D_{\mathrm{reg}}(r)
\end{aligned}
$$

ODE for H \rightarrow gg; I

Amplitude

There is one form factor F_{D} that can be written, without reduction, as $F_{D}=\sum_{i} F_{i}$

$$
\begin{aligned}
& F_{1}=\frac{1}{2} \int d^{n} q \frac{M_{H}^{2}-2 m_{t}^{2}}{(0)(1)(2)} \quad F_{2}=-2 \int d^{n} q \frac{q \cdot p_{1}}{(0)(1)(2)} \\
& (n-2) F_{3}=\int \frac{d^{n} q}{(0)(1)(2)}\left[(6-n) q^{2}+\frac{16}{M_{H}^{2}} q \cdot p_{1} q \cdot p_{2}\right]
\end{aligned}
$$

Mapping

A mapping is needed; suppose that $M_{H}^{2}<4 m_{t}^{2}$

ODE for H \rightarrow gg; I

Amplitude

There is one form factor F_{D} that can be written, without reduction, as $F_{D}=\sum_{i} F_{i}$

$$
\begin{aligned}
& F_{1}=\frac{1}{2} \int d^{n} q \frac{M_{H}^{2}-2 m_{t}^{2}}{(0)(1)(2)} \quad F_{2}=-2 \int d^{n} q \frac{q \cdot p_{1}}{(0)(1)(2)} \\
& (n-2) F_{3}=\int \frac{d^{n} q}{(0)(1)(2)}\left[(6-n) q^{2}+\frac{16}{M_{H}^{2}} q \cdot p_{1} q \cdot p_{2}\right]
\end{aligned}
$$

Mapping

A mapping is needed; suppose that $M_{H}^{2}<4 m_{t}^{2}$

ODE for H \rightarrow gg; II

Mapping $p_{1,2} \rightarrow P_{1,2}$

$$
\begin{array}{rr}
T=\left(\begin{array}{cc}
z & 1-z \\
1-z & z
\end{array}\right) & B \rightarrow M_{H}^{2} \frac{C}{G} \\
C=r^{2}+\mu_{t}^{2}(1+4 r) & G=-\frac{1}{4} M_{H}^{2}(1+4 r)
\end{array}
$$

$$
r=z(z-1) \text { and } \mu_{t}^{2} M_{H}^{2}=m_{t}^{2}
$$

ODE for H \rightarrow gg; III

Solution

$$
\begin{aligned}
r_{A T} & =-2 \mu_{t}^{2}\left[1+\sqrt{1-\frac{1}{4 \mu_{t}^{2}}}\right] \\
-\infty & <r_{A T}
\end{aligned}
$$

Solution for

the amplitude is needed at $r=0$

ODE for H \rightarrow gg; III

Solution

$$
\begin{aligned}
r_{A T} & =-2 \mu_{t}^{2}\left[1+\sqrt{1-\frac{1}{4 \mu_{t}^{2}}}\right] \\
-\infty & <r_{A T}
\end{aligned}
$$

Solution for

 the amplitude is needed at $r=0$
ODE for $\mathrm{H} \rightarrow \mathrm{gg}$; IV

Less simple but non-singular (in R)

$$
\begin{aligned}
T_{p} & =\left(\begin{array}{ccc}
1-z & z & 0 \\
0 & 1-z & z \\
z & 0 & 1-z
\end{array}\right) \\
M_{i}^{2} & =\left(1-\frac{z}{z_{A T}}\right) m^{2}+\frac{z}{z_{A T}} \bar{M}_{i}^{2}
\end{aligned}
$$

\bar{M} free parameters to satisfy

ODE for H \rightarrow gg; IV

Less simple but non-singular (in R)

$$
\begin{aligned}
T_{p} & =\left(\begin{array}{ccc}
1-z & z & 0 \\
0 & 1-z & z \\
z & 0 & 1-z
\end{array}\right) \\
M_{i}^{2} & =\left(1-\frac{z}{z_{A T}}\right) m^{2}+\frac{z}{z_{A T}} \bar{M}_{i}^{2}
\end{aligned}
$$

\bar{M}_{i} free parameters to satisfy

$$
\begin{aligned}
P_{1}^{2} & <\left(M_{1}+M_{2}\right)^{2} \quad P_{2}^{2}>\left(M_{2}-M_{3}\right)^{2} \\
\left(P_{1}+P_{2}\right)^{2} & <\left(M_{1}+M_{3}\right)^{2}
\end{aligned}
$$

ODE for $\mathrm{H} \rightarrow \mathrm{gg}$; V

System of ODE

$$
\frac{d}{d r} F_{i}=X_{i j} F_{j}+Y_{j}, \quad X, Y \text { from IBP }
$$

Trading F_{3} for F_{D}

ODE for $\mathrm{H} \rightarrow \mathrm{gg}$; V

System of ODE

$$
\frac{d}{d r} F_{i}=X_{i j} F_{j}+Y_{j}, \quad X, Y \text { from IBP }
$$

Trading F_{3} for $F_{D} \leadsto$

$$
\begin{aligned}
& \frac{d}{d r} F_{D}-X_{33} F_{D}+ \\
& \left(x_{33}-\sum_{i} x_{i 1}\right) F_{1}+\left(X_{33}-X_{22}\right) F_{2}=\sum_{i} Y_{i}
\end{aligned}
$$

etc.

ODE for H \rightarrow gg; VI

Boundary conditions at AT (factorization)

$$
\begin{aligned}
& F_{1} \sim \frac{1}{2}\left(M_{H}^{2}-2 m_{t}^{2}\right) C_{0}^{\text {sing }}\left(z_{A T}\right) \\
& F_{2} \sim M_{H}^{2} z_{A T} C_{0}^{\text {sing }}\left(z_{A T}\right) \\
& F_{D} \sim\left[\frac{M_{H}^{2}}{8}\left(1+6 r_{A T}\right)-m_{t}^{2}\left(1+4 r_{A T}\right)\right] C_{0}^{\text {sing }}\left(z_{A T}\right)
\end{aligned}
$$

ODE for H \rightarrow gg; VII

Solution

$$
\begin{aligned}
C_{0}(r) & =g(r) \ln \frac{B_{3}(r)}{M_{H}^{2}}+h(r) \\
\frac{d}{d r} g & =-\frac{2}{1+4 r} g
\end{aligned}
$$

Boundary

ODE for H \rightarrow gg; VII

Solution

$$
\begin{aligned}
C_{0}(r) & =g(r) \ln \frac{B_{3}(r)}{M_{H}^{2}}+h(r) \\
\frac{d}{d r} g & =-\frac{2}{1+4 r} g
\end{aligned}
$$

Boundary

$$
g\left(z_{A T}\right)=\frac{2 \pi i}{M_{H}^{2}} \beta\left(z_{A T}\right) \quad \beta^{2}(r)=1-4 \frac{\mu_{t}^{2}}{r}
$$

the regular part $h(r)$ is computed numerically

ODE for H \rightarrow gg; VII

Solution

$$
\begin{aligned}
C_{0}(r) & =g(r) \ln \frac{B_{3}(r)}{M_{H}^{2}}+h(r) \\
\frac{d}{d r} g & =-\frac{2}{1+4 r} g
\end{aligned}
$$

Boundary

$$
g\left(z_{A T}\right)=\frac{2 \pi i}{M_{H}^{2}} \beta\left(z_{A T}\right) \quad \beta^{2}(r)=1-4 \frac{\mu_{t}^{2}}{r}
$$

the regular part $h(r)$ is computed numerically

General strategy, e.g. for $N=4$

Define

$$
D_{n_{0} \ldots n_{3}}(i)=\int d^{n} q \frac{q \cdot q^{n_{0}} \ldots q \cdot P_{3}^{n_{3}}}{(0) \ldots(i)^{2} \ldots(3)}
$$

which satisfy

$$
D_{n_{0} \ldots n_{3}}(i)=M_{i j}^{-1} d_{n_{0} \ldots n_{3}}(j)+d_{n_{0} \ldots n_{3}}^{\prime}(i)
$$

Then

find the minimal set of linear combinations $F=c D$ such that $A m p=\sum F$ with $\{F\}$ closed under $d / d z$.

General strategy, e.g. for $N=4$

Define

$$
D_{n_{0} \ldots n_{3}}(i)=\int d^{n} q \frac{q \cdot q^{n_{0}} \ldots q \cdot P_{3}^{n_{3}}}{(0) \ldots(i)^{2} \ldots(3)}
$$

which satisfy

$$
D_{n_{0} \ldots n_{3}}(i)=M_{i j}^{-1} d_{n_{0} \ldots n_{3}}(j)+d_{n_{0} \ldots n_{3}}^{\prime}(i)
$$

Then

find the minimal set of linear combinations $F=c D$ such that Amp $=\sum F$ with $\{F\}$ closed under $d / d z$.

General strategy, e.g. for $N=4$

Define

$$
D_{n_{0} \ldots n_{3}}(i)=\int d^{n} q \frac{q \cdot q^{n_{0}} \ldots q \cdot P_{3}^{n_{3}}}{(0) \ldots(i)^{2} \ldots(3)}
$$

which satisfy

$$
D_{n_{0} \ldots n_{3}}(i)=M_{i j}^{-1} d_{n_{0} \ldots n_{3}}(j)+d_{n_{0} \ldots n_{3}}^{\prime}(i)
$$

Then

find the minimal set of linear combinations $F=c D$ such that Amp $=\sum F$ with $\{F\}$ closed under $d / d z$.

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

- with $m=1, p^{2}=x$ shift $x \rightarrow z x$

$$
\begin{aligned}
& x z(x z+1)(x z+9) \frac{d^{2}}{d z^{2}} S(x, z)= \\
& P(x, z) \frac{d}{d z} S(x, z)+Q(x, z) S(x, z)+R(x, z)
\end{aligned}
$$

AT solution

(Warning: AT = pseudo-threshold); for different

masses, map

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

- with $m=1, p^{2}=x$ shift $x \rightarrow z x$

$$
\begin{aligned}
& x z(x z+1)(x z+9) \frac{d^{2}}{d z^{2}} S(x, z)= \\
& P(x, z) \frac{d}{d z} S(x, z)+Q(x, z) S(x, z)+R(x, z)
\end{aligned}
$$

AT solution

$z_{A T}=-x^{-1} \quad$ (Warning: AT = pseudo-threshold); for different masses, map

$$
m_{i} \quad \rightarrow \quad M_{i}=\frac{z-z_{A T}}{1-z_{A T}} m_{i}+\frac{1-z}{1-z_{A T}} m
$$

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

```
In LL04 I mentioned the word anomalous threshold,
Peter Zerwas told me 'that shows vour age'
perhaps he was wrong
perhaps not
but then others will fall away
```


Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

```
In LL04 I mentioned the word anomalous threshold,
Peter Zerwas told me 'that shows your age'
perhaps he was wrong...
perhaps not...
but then others will fall away ...
```

