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(% ] From the analytical structure of Feynman diagrams




Outlines

o From the analytical structure of Feynman diagrams
(%] to their numerical evaluation

what else, but the inevitable!
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This is what | should have been talking about
S. Actis, C. Sturm, S. Uccirati and myself (= 10 kilohour)
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Part Il



Theorem

Z {1—Ioop n-legs Feynman diagrams} =
Z BDDo(P}), ,P4D) +...
D

D partition of {1...n} into 4 non-empty sets
PP sum of momentaini € D




Scalar one-loop integrals

form a basis. Thus, coefficients are uniquely determined,
although some method can be more efficient than others in
their determination. However, troublesome points will always be
there (Denner-Dittmaier anathema). What to do?

@ Change (adapt) bases?

@ Avoid bases (expansion)?

@ Rethinking necessary.




Part Il

Factorization of Feynman amplitudes



Factorization

Any Feynman diagram

is particularly simple when evaluated around its anomalous
threshold.

Kershaw theorem (1972)

The singular part of a scattering amplitude around its leading
Landau singularity may be written as an algebraic product of
the scattering amplitudes for each vertex of the corresponding
Landau graph times a certain explicitly determined singularity
factor which depends only on the type of singularity (triangle
graph, box graph, etc.) and on the masses and spins of the é
internal particles.




Factorization

scalar one-loop N -leg integral in n -dimensions as

e n 1
Shnw = - /d gt
o i 2 Hi:o,N—l(')
(i) = (@+ko+ - +k)*+m?

Use N -simplex




Factorization

In parametric space we get

IN]n = /dSN—lvﬁ/z_N’

with %

Vi = X'HyX +2Kix +Ly, Xy=-K{Ht




Factorization
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Factorization

In parametric space we get

IN]n = /dSN—l\/I\?/Z_N7

with %

V. — wiH yi12ktiy 11 X — _ktH-1




Factorization

Useful jargon (used by addicts) J

BST factor




Factorization

Useful jargon (used by addicts) J

BST factor

By = Ly—K!H{1K,

Gram (determinant)

Hi=—k-k  G=deH %




Factorization

Useful jargon (used by addicts) J

BST factor Caley (determinant)

M — HN KN
By = Ly—K!H{1K, K Ly

Gram (determinant)

Hi=—k-k  G=deH %




Factorization

It follows

B = C/G, where C = detM is the so-called modified Cayley
determinant of the diagram.

LS as pinches (masses & invariants € R)

Vi = (x = Xy)' H (X — Xy) + By

\

\

No discussion of the complex part of singular surface

By = 0 induces a pinch on the integration contour at the point
of coordinates x = Xy; therefore, if the conditions,

By =0, 0 < Xyno1 < oo < Xy1 <1,

are satisfied we will have the leading singularity of the diagram.



Factorization

A common wisdom, but?

@ The vanishing of the Gram determinant is the condition for
the occurence of non-Landau singularities, connected with
the distorsion of the integration contour to infinity;

@ furthermore, for complicated diagrams, there may be
pinching of Landau (C = 0) and non-Landau singularities
(G = 0), giving rise to a non-Landau singularity whose
position depends upon the internal masses (so-called D?
wild points).




Factorization

It follows:

@ Given the above properties the factorization of Kershaw
theorem follows.

@ The beauty of being at the anomalous threshold is that
everything is frozen and the amplitude factorizes.

@ But, what to do with a point?

@ It looks perfect for boundary conditions, as long as we can

reach it. Alternative: expand & match residues at a given
AT (Cachazo 2008). é




Factorization

3 3
W[ gng AP 01D = — Hy,
i 72 d'q H| 03() - iz_;Dllpl pi = iZ:DlIHll'

carefull application of the method

1 . . .
Di = —5Hi'dj, di=Dg™ Dy’ 2K D,
where Dg) is the scalar triangle obtained by removing é
propagator i from the box.




Factorization

Therefore we obtain

3
/Le n q-p2 1 —i 1
=L = = = g H-Hd ==d

(no G3). Furthermore, the coefficient of Dg in the reduction is

5 (mg — m¢ - p?)

(General feature of tensor-N — scalar- N)




Factorization

At the leading Landau singularity of the box we must have

g°>+mg = 0, (q+p1)?+mZ=0, etc.

Therefore
the coefficient of Dy is fixed by

ZQ‘Pl‘ = mg

AT

2 2
_ml_p17

which is what a careful application of SR gives. Note that one %
gets the coeff. without having to require a physical singularity.




Factorization

Xeo =1
Xes =0

.. easy with BST

AXgi = Xej — Xejir1 B5(I) —0
F({n}s) ~ 1 AXei XPE(Q) L XM L XIS () ESNOG)

1 AX ; .
or = B XM(5) ... X2(B)ES™(5) g0 | =5 é



Factorization

Progress

@ At least in one point we
can avoid reduction, all
integrals are scalar;

@ but, do we need to have
the AT inside the
physical region Rphys
(support of A* in R)?




Factorization

@ Atleast in one point we @ Since this is a rare event
can avoid reduction, all (see later) we must have
integrals are scalar; a generalization:

@ but, do we need to have @ prove that the AT, even
the AT inside the with invariants & Rphys,
physical region Rpnys implies a frozen g.
(support of A* in R)? ‘




Factorization

1 1
if _—/d”qi. is singularatx = X € R
i w2 [Ticon-1 (1)




Factorization

1 1
if _—/d”qi. is singularatx = X € R
i w2 [Ticon-1 (1)

-

Then (example)

1 [ng 9P S imlio .o
2 /d quzo,N_1(i) - Z;[N]n(l)pl Pi
N N

SN Hi & S INJn(2) Hi X = — K [N]n. é

i=1 i=1

>




Factorization

1 1
if _—/d”qi. is singularatx = X € R
i w2 [Ticon-1 (1)

-

Then (example)

1 [ng 9P S imlio .o
2 /d quzo,N_1(i) - Z;[N]n(l)pl Pi
N N

SN Hi & S INJn(2) Hi X = — K [N]n. é
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Factorization




Factorization




Factorization

Xi=-KiH*  HX=-K

~» Factorization

At the AT all scalar products — solution of

(q+"'+pi)2+mi27 i=0,...,N—1.




Part IV

More on the AT



For N = 4 there are 14 branches in p -(real) space,

p? >0,p) <0

2 2 2 2 2 2 2 2
M; < (mp+m)T, M >(mi7mj) ,Mk<(mj+mk) , M < (mg —my)T,
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For N = 4 there are 14 branches in p -(real) space,

p? >0,p) <0

2 2 2 2 2 2 2 2
M; < (mp+m)T, M >(mi7mj) ,Mk<(mj+mk) , M < (mg —my)T,

2 2 2 2 2 2 2 2
M; < (mp+m)T, M <(mi+mj) ,Mk>(mjfmk) , ME > (mg —my)T,




time — M m M

M >2m M

In 2 — 2 two unstable particles € |in > are needed! J%




time — m




For those who don’t want an AT in their MC, beware of

y*,Z* etc

S>4-I’ni2 MZ(H)>4M2



Hexagons don’t count but pentagons < hexagons do! J




Expansion around AT

of Feynman integrals is easy
to derive analytically

e.g. ImCy has a log singularity, ReCgy has a discontinuity

) NO IR/coll configuration, otherwise enhancement of singular %
behavior (in the residues of IR/coll poles).




Expansion around AT

of Feynman integrals is easy
to derive analytically

Requires
@ Mellin-Barnes
@ Sector decomposition

e.g. ImCy has a log singularity, ReCgy has a discontinuity
) NO IR/coll configuration, otherwise enhancement of singular %
behavior (in the residues of IR/coll poles).




Expansion around AT Leading behavior T

of Feynman integrals is easy @ Cy ~ In Bg;

to derive analytically ® Dy ~ B-1/2.
4 H

1.

@ Mellin-Barnes @ Fo none in 4d.
@ Sector decomposition

e.g. ImCy has a log singularity, ReCgy has a discontinuity
) NO IR/coll configuration, otherwise enhancement of singular
behavior (in the residues of IR/coll poles).

®




Problem

pentagon — non-integrable
pole




Problem

pentagon — non-integrable
pole

© spin + gauge
cancellations

@ unstable particles —
complex masses




Problem

pentagon — non-integrable
pole

© spin + gauge
cancellations

@ unstable particles —

complex masses

Preliminar

© simple examples — not
the case

Q unitarity?

@ forinteg. sing. average
over a Breit-Wigner of
the invariant mass of
unstable ext particles




Part V

Differential equations



Everything is suggesting DE with boundary conditions at the AT

But we want
@ ODE for the amplitude;
@ real momenta f:

@ one boundary condition.

T)p € C means SL(2,C) ® SL(2,C) — double cover of %
SO(3,1)



Everything is suggesting DE with boundary conditions at the AT

But we want
@ ODE for the amplitude;
@ real momenta f:

@ one boundary condition.

Requires
@ the right variable

I

T)p € C means SL(2,C) ® SL(2,C) — double cover of %
SO(3,1)



Everything is suggesting DE with boundary conditions at the AT

But we want Advantages
@ ODE for the amplitude; @ no reduction;
@ real momenta ; @ extedibility to higher
@ one boundary condition. loops.

Requires
@ the right variable

I

T)p € C means SL(2,C) ® SL(2,C) — double cover of %
SO(3,1)



@ non-homogeneous systems of ODE are easy to obtain with
IBP but the non-homogeneous part requires (a lot) of
additional work;

@ PDE are notoriously much more difficult!




@ non-homogeneous systems of ODE are easy to obtain with
IBP but the non-homogeneous part requires (a lot) of
additional work;

@ PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy
to derive, a fact that has to do with the hypergeometric
character of one-loop diagrams.




Use
@ Kershaw expansion around pseudo-threshold and

@ generalization of Horn-Birkeland-Ore theory (see Bateman
bible)

to write one-loop diagrams as

F(ze, ... ,zZm) = ZA(nl,.. nm)l_[_|

{ni}




@ Kershaw expansion around pseudo-threshold and

@ generalization of Horn-Birkeland-Ore theory (see Bateman
bible)

to write one-loop diagrams as

z"
{ni} i '

. i
Since

A(...mi+1,...)  Pi({m}) _fin. pol.
A(..,ni,...) Qi ({m}) fin. pol.

\,






afs ) n (el - o

Sij — (mj —m;)

2
si = —(pi+...+p-1)” z= e
]

Pij = (ni T 1) (n,- I 1), n = Z njj + Z N;i
j>i j<i é
Qj = (nj+1)(n + ), n=>_n

i<j







@ maps D(0) into D(z) which is singular at z,; € R

sj — Si(z) € Phys,

@ no restriction on s;




M — physical

@ maps D(0) into D(z) which is singular at z,; € R
sj — Si(z) € Phys,
@ no restriction on s;

M — unphysical

@ maps D(0) into D(z) which is singular at z,; € R

si — Sij(z) € Phys, é

@ restriction on s;;




—~——v—~ Massless

massive

N 7
N /7
N7
7N\
4 A Y
, N T
BTV, — = = = P >



P, =

z(1-2)u, S=(1-22)%s, T=(1-22)t,U=u
2
Z

—z
1
2u?

(1-2)pi +Zpit2

transf. invariants

mod 4

4m?s + ut + \/s (4m2 — u) (4m?2s + ut)]




Pi = (1-2z)pi+zpiy2 mod4

transf. invariants

z(1-2)u, S=(1-22)%s, T=(1-22)*t, U=u
72—z

1 2 2 2

502 4m s+ut+\/s(4m —u)(4m s+ut)]




r----

massive

—~——v—~ Massless




Pi = pi+(-1) (pr+ps)z

M2 = ur,S=s, T=t U=(1+4r)u

r = z2-z2

far = Z—tz [4 m?u + \/u2 (4m2 — ) (4m2 — t)}

unphysical, PZ & Rphys

requires s < 4m?




Pia = Pira+(P1+p2)2, Paz=p23—(p1+p2)2,

s Mi,=z(z-1)s
u, T=(1+42z%t

unphysical, Pij2 Z Rphys é

requiress >4m?andu <4m? —s



If 3 adiagram D, a transformation T

D(z) = T(z)D, T(0)=1, D(zs)singularz, €R




If 3 adiagram D, a transformation T

D(z) = T(z)D, T(0)=1, D(zs)singularz, €R

D — D(z,zar)
D(z,2x) = T1(2,2ar) D+ T2(z,24) D(0)
Tl (O’ZAT) = |7 T2 (07ZAT) =0 %

Tl(ZATazAT) = 07 TZ(ZATvaT):I




Derive (T & T2)® T

Pl = [fi+f (1—2)|pi+fozur Pz, mod4
YA
fi = l—a fo=1-f




Derive (T & T2)® T

Pi = [t (1—2u)| Pitfozur Piyz, modd
V4

fi = - =1—

1 1 Zer fo 1-f

© direct box — crossed box
@ crossed box — singular crossed box %




—~——v—~ Massless

massive



Requires shift on internal masses

p — P=Tp(z)p and m —>M =Tp(z)m




Requires shift on internal masses

p — P=Tp(z)p and m —>M =Tp(z)m

- -

z z
PL = (1-2)p1+z (ps+*K) Po=(1-2)pp+2 (Pa**K>
ZAT ZAT
z z
P3 = zpp+(1—-2z)(ps+-—K]| Pyg=zpp+(1—-2)|ps— —K
ZAT ZAT

- -

_ z z
asg (. 2 1a) %

ZAT  ZAT

Ky = ke(u,p1,p2,P3) k2:74§ [St+(t7m2)2}_1




ODE for boxes

Do ({n})

Do(i)
d
az o

NE /dn 1
i w2 qu:o,s(')”"
Do(L,...,2,...,1) Do=Do(L,...,1)

2zs [DO(Z) + Do(4)| + triangles




ODE for boxes

Do ({n})

Do(i)
d
az o

NE /dn 1
i w2 qu:o,s(')”"
Do(L,...,2,...,1) Do=Do(L,...,1)

2zs [DO(Z) + Do(4)| + triangles




ODE for boxes

Do ({n}) = ilj:z /dnq mv
Doi) = Do(L,....2,....1) Do=Do(L,...,1)
dp
E 0

= 21zs [Do(2)+Do(4) + triangles

Do(i) = M;'d; detM(zy)=0

where d; contains Dg or triangles.



%Do(r) = C;7M(r) [X(r) Do(r) + Dres(r)

where C, is the Caley determinant.




%Do(r) = C,'(r) {X(r)Do(r)-i-Dr&st(r)}

where C, is the Caley determinant.

d
3 Cs = —2X(r)  ~

D.
Do(r) = ——0 4 Drey(r)

(r —ry)Y?




A simple example

Amplitude

There is one form factor Fy that can be written, without
reduction,as F, =) ; F

n —2m? B q-p
/d TomE) ‘Z/d D
(n—@m/%[(a )6+ {3 a-Pia P




A simple example

Amplitude

There is one form factor Fy that can be written, without
reduction, as F, = ) ; F;

L[ gngMi—2mE [ e 9 P1
Fl‘i/ Tome 7T 2/ Tom@
16

m-2)F= [ Gy (Mo + i a-pia-pd

Mapping
A mapping is needed; suppose that Mf' < 4m?




A simple example

Mapping pi2 — P12

T:(lz 1_Z> B—>|V|2C

—Z z HG

1
C = r24u?(1+4r) G:—ZM§(1+4r)

r=z(z-1) and pfM? =m? é



A simple example

Solution




A simple example

Solution

the amplitude is needed atr =0




A simple example

Less simple but non-singular (in  R)
1-z z 0




A simple example

Less simple but non-singular (in  R)
1-z z
z 0

Mi2 = <1_i> m2+imi2

Zat

Zat

M; free parameters to satisfy

P2 < (Mp+ My)?
(P1+P2)? < (Mg + Ms)?

P2 > (My — M3)?




A simple example

System of ODE

—F = XjF+Y;, X,Y fromIBP




A simple example

System of ODE

d
d—rFi = Xqu—i-Yj, X,Y from IBP

Trading F3 for Fp ~»

a
dr

<X33 = Z Xi1> Fi 4+ X3z — X22) F2 = Z Yi é

Fo — XasFp +

i
etc.



A simple example

Boundary conditions at AT (factorization)

1 .
Fro~ 5 (M2-2m?) c§™ (zu)
F2 ~Y M'f ZAT ang (ZAT)

MZ .
Fo ~ [?H (1+6rAT)—mt2 (14 4rar) ang(zAT)




A simple example

Ba(r
Co(r) = g(r)In ,f’/l(z)+h(r)
H
d 2
ar? T T 1gar?




A simple example

Ba(r
Co(r) = g(r)In ,f’/l(z)+h(r)
H
d 2
ar? T T 1gar?

_ 2 2N 1 ,utz
g(ZAT)_M—E{ﬁ(ZAT) pe(r)=1 4T




A simple example

Solution

Ba(r
Co(r) = g(r)In ,f’/l(z)+h(r)
H
d 2
ar? T T 1gar?

_ 2 2N 1 ,utz
g(ZAT)_M—E{ﬁ(ZAT) pe(r)=1 4T

the regular part h(r) is computed numerically




A simple example

q- q”°- q-P3™
Dno n3 /d q (|)2 (3)




A simple example

g-9™...q-P3"™
Dunll) = [ Gyt

- (3)

Dno...ng(i) = M”_l dno...ng(j) +dr,10n3(|)




A simple example

Define

. ngd A" ... q-Ps™
Dno..ns(i) = /d q(o),,.(i)z...?B)

which satisfy

Dno...ng(i) = M”_l dno...ng(j) +dr,10n3(|)

Then

find the minimal set of linear combinations F = ¢ D such that
Amp = > F with {F} closed underd/dz.




A simple example

Equal mass two-loop sunset a la Remiddi

@ with m = 1,p2 = x shift x — zx

2
xz(xz+1) (xz+9) %S(x,z):

P(x,z) :—Z S(x,z) +Q(x,z)S(x,z) + R(x,z)




A simple example

Equal mass two-loop sunset a la Remiddi

@ with m = 1,p2 = x shift x — zx

2
xz(xz+1) (xz+9) %S(x,z):

P(x,z) :—Z S(x,z) +Q(x,z)S(x,z) + R(x,z)

Z,y = —x 1 (Warning: AT = pseudo-threshold); for different
masses, map

m M Z — Zar 1-z
N - .
' b1z 1—2zx




Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a
single variable deformation of the amplitude.




Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a
single variable deformation of the amplitude.

In LLO4 | mentioned the word anomal ous threshold,
Peter Zerwas told me ‘that shows your age’
perhaps he waswrong . . .

perhaps not . . .

but then others will fall away . . %
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