New Results in four and five Loop QED and QCD calculations

Konstantin Chetyrkin with P. Baikov J. H. Kühn and C. Sturm

LOOPS & LEGS 2008

Outline

- **0.** Five-loop massless correlators: calculational status
- 1. * Vector (new!) and scalar correlators to order α_s^4 for generic number of quark flavours N_f
- **2.** $(g-2)_{\mu}$: new analytical results at order α^5
- **3.** Progress in computing QED β -function in 5 loops

^{*} applications of the result for $\sigma_{tot}(e^+e^- \rightarrow hadrons)$ and τ -decays will be discussed in the talk by J. H. Kühn tomorrow

• Correlator of two currents:

$$\Pi^{\mu\nu}(q,j) = i \int dx \, e^{iqx} \langle 0|Tj^{\mu}(x)j^{\nu}(0)|0\rangle = (-g^{\mu\nu}q^2 + q^{\mu}q^{\nu})\Pi(q^2)$$

<u>here</u>: $j^{\mu}(x)$ electromagnetic heavy vector current ((as an example)

• Diagrammatically:

- Two limits are of interest:
 - Expansion of the diagrams in the external momentum around $q^2 = 0$ \implies vacuum diagrams (tadpoles) \longrightarrow front edge: 4 loops

– High energy limit

 \implies massless propagators \longrightarrow front edge:

5 loops /for absorptive part only/ 4 loops /in general/

Tool Box *

- IRR / Vladimirov, (78) / + IR R* -operation /K. Ch., Smirnov (1984) / + resolved combinatorics /K. Ch., (1997) /
- reduction to Masters: "direct and automatic" construction of CF's through 1/D expansion—made with BAICER—within the Baikov's representation for Feynman integrals¹
- all 4-loop master p-integrals are known analytically /P. Baikov and K.Ch. (2004)/
- computing time and required resources: could be huge (the price for full automatization); to cope with it we use parallel FORM /Vermaseren, Retey, Fliegner, Tentyukov, ...(2000 ...) and MANY computers... (see below)

* NO IBP identities are use at any step!

¹Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378-381,2003

$$R(s) \approx \Im \Pi(s - i\delta)$$
$$3Q^2 \Pi(q^2 = -Q^2) = \int e^{iqx} \langle 0|T[j^v_\mu(x)j^v_\mu(0)]|0\rangle dx$$

To conveniently sum the RG-logs one uses the Adler function:

$$D(Q^2) = Q^2 \frac{d}{dQ^2} \Pi(q^2) = Q^2 \int \frac{R(s)}{(s+Q^2)^2} ds$$

or $(a_s\equiv lpha_s/\pi)$

$$R(s) = \frac{1}{2\pi i} \int_{-s-i\delta}^{-s+i\delta} dQ^2 \frac{D(Q^2)}{Q^2} = D(s) - \pi^2 \frac{\beta_0^2 d_0}{3} a_s^3 + \dots$$

$$d_4 = n_f^3 \left[-\frac{6131}{5832} + \frac{203}{324} \zeta_3 + \frac{5}{18} \zeta_5 \right] \quad (\text{``renormalon'' chain /M. Beneke 1993/}) \\ + n_f^2 \left[\frac{1045381}{15552} - \frac{40655}{864} \zeta_3 + \frac{5}{6} \zeta_3^2 - \frac{260}{27} \zeta_5 \right] \quad /\text{Baikov, Kühn, K.Ch. (2002)/}$$

$$+n_f \left[-\frac{13044007}{10368} + \frac{12205}{12} \zeta_3 - 55 \zeta_3^2 + \frac{29675}{432} \zeta_5 + \frac{665}{72} \zeta_7 \right]$$

$$+\left[\frac{144939499}{20736} - \frac{5693495}{864}\zeta_3 + \frac{5445}{8}\zeta_3^2 + \frac{65945}{288}\zeta_5 - \frac{7315}{48}\zeta_7\right]$$

Interesting features:

- 1. irrationals up to ζ_7 (understandable from the structure of the masters)
- 2. no ζ_4 and/or ζ_6 (expected but mysterious!)

2005 - 2008: Three $\mathcal{O}(\alpha_s^4)$ Calculations

used CPU time (measured in terms of a one 3 GH PC)

- QCD: scalar $R^{SS}(s)$: (\approx 5 years)
- Quenched QED: β -function (\approx 25 years)
- QCD: $R^{VV}(s)$ (\approx 60 years)

In Reality

calculations of $R^{VV}(s)$ were made mainly on HP XC4000 supercomputer of the Karlsruhe University (claster of Dual Core AMD Opteron 2.6 GH). It took about 60 CPU years, but only around 5 calendar months (up to 160 = (20 "octets" of processors running parallel FORM) were simultaneously used).

To compare: scalar $R^{SS}(s)$ took about 5 CPU years and QQED about 25 CPU years, with calendar time about 1 year for each (but with older processors and less developed software). • Dirac theory predicts for a lepton $l = e, \mu, \tau$:

$$\vec{\mu}_l = g_l \left(\frac{e}{2m_l c}\right) \vec{s}, \quad g_l = 2$$

• quantum loops \implies deviations from $g_l = 2$:

$$g_l = 2 \ (1+a_l)$$

$$= \bar{u}(p') \left[\gamma^{\mu} F_{\rm E}(q^2) + i \frac{\sigma^{\mu\nu} q_{\nu}}{2m_{\mu}} F_{\rm M}(q^2) \right] u(p)$$

• in the static limit

$$F_E(0) = 1; \quad F_M(0) = a_\mu$$

The present experimental value is terrifically accurate:

$$a_{\mu} = 116592080(63) \cdot 10^{-11}$$

0.5 parts per billion!! (E821: Final Report: PRD73 (2006) 072003) The current theory prediction shows an "interesting but not yet

conclusive discrepancy¹" of about 3σ (or 1.8σ if ones switches to the τ -data in order to describe the hadronic effects)

¹A. Höcker, W. Marciano, PDG, July of 2007

Higher order corections to a_{μ} are basically classified into 4 classes:

The QED part is known to 4 loops¹ (and numericaly leading terms in 5 !) The EW part is known to 2 loops

The Hadronic part is known but with limited accuracy ...

¹ and four loops contribute as much as $378.5 \cdot 10^{-11}$!!! (cmp. to experimental uncertainty $\sim 70 \cdot 10^{-11}$!)

The QED contribution to a_u

a, QED = $(1/2)(\alpha/\pi)$ Schwinger 1948 + 0.765857410 (27) (α/π)² Sommerfield: Petermann: Suura & Wichmann '57: Elend '66: MP '04 + 24.05050964 (43) (α/π)³ Barbieri, Laporta, Remiddi ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat, de Rafael '05 + 130.805 (8) $(\alpha/\pi)^4$ Revised! Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa, Kinoshita & Nio, June 2007 + 663 (20) (α/π)⁵ In progress Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio March '06. AAdding up, I get: a_uQED = 116584718.10 (14) (08) × 10⁻¹¹ mainly from 5-loop unc \checkmark from new $\delta \alpha$ with $\alpha = 1/137.035999068$ (96) [0.7 ppb]

There are 2 types of numerically leading enhanced with logs of large ratio $\frac{M_{\mu}}{m_e} = 206.7682838$ pure QED contributions:

LL: light by light

VP: vacuum polarization:

 $\left(\frac{1}{3}\ln\left(\frac{M_{\mu}}{m_{e}}\right)+\ldots\right)\left(\frac{\alpha}{\pi}\right)^{2}$

$$\left(\frac{2\pi^2}{3}\ln(\frac{M_{\mu}}{m_e})+\dots\right)\left(\frac{\alpha}{\pi}\right)^3$$

We will consider mixed VP contributions:

 $D^{\mu\nu}_{R}(q^2, m_e^2, \alpha)$

As is well-known (B.E Lautrup and E.de Rafael NPN 70 (1974) 317)

$$a_{\mu}(M/m,\alpha) = \frac{\alpha}{\pi} \int_0^1 \mathrm{d}x(1-x) \left[d_R\left(\frac{x^2}{1-x}\frac{M^2}{m^2},\alpha\right) - 1 \right] \quad \star$$

Important: $\Pi_R(Q^2/m^2, \alpha) = \Pi_R^{\infty}(Q^2/m^2, \alpha) + \mathcal{O}(m^2/Q^2)$ and if one uses only Π_R^{∞} in (\star) then the resulting error in a_{μ} will only be of order m/M or higher!

Some instructive hystorical examples

In 1991 R, Faustov et al., found (using some results from¹) that the contribution of

+ two more

$$a_{\mu} = \left[0.923 + \mathcal{O}\left(\frac{m_e}{M_{\mu}}\right)\right] \left(\frac{\alpha}{\pi}\right)^4$$

was in disagreement to the numeric result by

(T. Kinoshita, B. Nizik, Y.Okamoto (1990))
$$a_{\mu} = 1.4416(18) \left(\frac{\alpha}{\pi}\right)^4$$
 (*)

The problem came from a theoretical error in ¹. After its correction (T. Kinoshita, H Kawai, Y.Okamoto (1991)) the new result is in good agreeement to (\star)

$$a_{\mu} = \left[1.452570 + \mathcal{O}\left(\frac{m_e}{M_{\mu}}\right)\right] \left(\frac{\alpha}{\pi}\right)^4$$

¹ J. Calmet and E. De Rafael, (1975)

Hystory: continuation I

quenched approximation for the photon propagator:

Initial asymptotic result (D. Broadhurst, A. K. Lataev, O. Tarasov (1994)) was in disagreement to that by (T. Kinoshita, B. Nizik, Y.Okamoto (1990))

 $-0.29087^{asym} \iff -0.7945(202)^{num}$

after recalculation (with a new, improved integration routine VEGAS instead of RIWARD and much better statistics) the result changed to (T. Kinoshita, (1993):

-0.2415(19)

Hystory: continuation II

Two years later (1995) D. Broadhurst and P. Baikov improved the asymptoic result (by combining the asymptoic and threshold result via a new Padè-based method) and arrived to

 $-0.230696(5)^{impr.\ asym.,1995} \iff -0.2415(19)^{num,1993}$

"The problem was traced to round-off errors caused by insufficient number of effective digits in real*8 arithmetic in carrying out the renormalization ... This was resolved by going over to the real *16 arithmetics." /Kinoshita, Nio, (2004)/

The new result (T. Kinoshita, M Nio (1999)) is in good agreeement to the improved asymptotic one:

 $-0.230696(5)^{impr.\ asym.,1995} \iff -0.230\ 596\ (416)^{num,1999}$

On-Shell versus \overline{\text{MS}} Schemes for α

Traditionally in calculations of a_{ℓ} everybody uses the classical OS-scheme: all lepton masses are **on-shell** ones and the charge renormalization is fixed by the condition:

$$\Pi^{OS}(Q=0,m,\alpha^{OS})\equiv 0$$

In QED different schemes are easily related through the *scheme invariant concept* of the *invariant charge*:

$$\frac{\alpha^{OS}}{1 + \Pi^{OS}(Q, m, \alpha^{OS})} = \frac{\overline{\alpha}}{1 + \overline{\Pi}(Q, m, \overline{\alpha})}$$

Thw important facts:

- The $\overline{\text{MS}}$ -renormalzed photon self-energy $\overline{\Pi}(Q, m, \overline{\alpha})$ does not have any $\ln(m_e)$ terms at large Q (they apear only $\mathcal{O}(m_e^4/Q^4)$ level)
- It does cointain $\ln(m_e/\mu)$ at Q=0

Thus, in order to construct Π_R^{OS} in four-loop one needs 3 pieces:

- the value of $\overline{\Pi}(Q^2, m = 0, \overline{\alpha})$ at 4 loops \Leftarrow easily computable with BAICER (not so many dots) (P. Baikov, 2000-2008)
- $\overline{\Pi}(Q=0,m,\overline{\alpha})$ at 4 loops \Leftarrow easily computable these days (not so many dots)

As a by-product we also get the 4-loop relation between OS- and $\overline{\text{MS}}$ renormalized α :

$$\alpha^{OS} = \frac{\overline{\alpha}}{1 + \overline{\Pi}(Q^2 = 0, m, \overline{\alpha})}$$

 the MS ↔ On-Shell relation for quark masses at 3 loops (M. Steinhauser, K.Ch, (1999); K. Melnikov, T. van Ritbergen (2000)) The four-loop piece of Π_R^{OS} reads $(L_{Qm} = \ln \frac{Q^2}{m_e^2}, a_n = \text{PolyLog}[n, 1/2])$ $\Pi_4^{OS} =$

$$+ n_{l} \left[-\frac{71189}{34560} - \frac{157}{72} \pi^{2} - \frac{59801}{129600} \pi^{4} + \frac{6559}{320} \zeta_{3} - \frac{1}{24} \pi^{2} \zeta_{3} - \frac{1603}{120} \zeta_{5} \right] \\ - \frac{35}{4} \zeta_{7} + \frac{23}{128} \ell_{Qm} + \frac{59}{12} \pi^{2} \ln 2 + \frac{106}{675} \pi^{4} \ln 2 - \frac{1559}{1080} \pi^{2} \ln^{2} 2 + \frac{32}{135} \pi^{2} \ln^{3} 2 \\ + \frac{1559}{1080} \ln^{4} 2 - \frac{32}{225} \ln^{5} 2 + \frac{1559}{45} a_{4} + \frac{256}{15} a_{5} \right] \\ + n_{l}^{2} \left[\frac{20099}{4725} - \frac{179}{324} \pi^{2} - \frac{9491}{28800} \pi^{4} + \frac{1054517}{50400} \zeta_{3} - \frac{5}{3} \zeta_{3}^{2} - \frac{95}{18} \zeta_{5} \right] \\ - \frac{7}{18} \ell_{Qm} - \frac{11}{12} \zeta_{3} \ell_{Qm} + \frac{5}{3} \zeta_{5} \ell_{Qm} - \frac{1}{48} \ell_{Qm}^{2} + \frac{16}{27} \pi^{2} \ln 2 - \frac{1001}{720} \pi^{2} \ln^{2} 2 \\ + \frac{1001}{720} \ln^{4} 2 + \frac{1001}{30} a_{4} \right] \\ + n_{l}^{3} \left[\frac{75259}{68040} + \frac{8}{405} \pi^{2} - \frac{15109}{22680} \zeta_{3} - \frac{5}{9} \zeta_{5} - \frac{151}{162} \ell_{Qm} + \frac{19}{27} \zeta_{3} \ell_{Qm} \\ + \frac{11}{72} \ell_{Qm}^{2} - \frac{1}{9} \zeta_{3} \ell_{Qm}^{2} - \frac{1}{108} \ell_{Qm}^{3} \right],$$

The resulting contributions to the a_{μ} coming from genuily 4-loop terms in the photon propagator read $(L_{Mm} = \ln \frac{M_{\mu}}{m_e})$

$$\left(\frac{\alpha}{\pi}\right)^{5} \left[n_{l}^{3}\left(-0.591+0.546L_{Mm}-0.177L_{Mm}^{2}+0.037L_{Mm}^{3}\right) +n_{l}^{2}\left(\left(0.924-0.342L_{Mm}+0.0417L_{Mm}^{2}\right)+n_{l}\left(1.210-0.1796L_{Mm}\right)\right]$$
(1)

they correspond to diagrams:

+ about a fifty more

Subset	analytical	numerical	
I(j)	-1.21429	-	
I(i)	+0.25237	-	
I(g) + I(h)	+1.50112	_	
I(f)	+2.89019	+2.88598(9)	\checkmark
I(c)	+4.81759	+4.74212(14)	\checkmark
I(d)	+7.44918	+7.45270(88)	\checkmark
I(e)	-1.33141	-1.20841(70)	\checkmark
I(b)	+27.7188	+27.69038(30)	\checkmark
I(a)	+20.1832	+20.14293(23)	\checkmark

(all numerics from M. Nio, T. Aoyama, M. Hayakawa and T. Kinoshita (2007) and T. Kinoshita and M. Nio, (2006)

Numerically all (VP,mixed) 5-loop terms summed together lead to a tiny contribution:

$$\begin{aligned} a_{\mu}(\text{VP,mixed,4-loops}) &= \left(\frac{\alpha}{\pi}\right)^{5} \left[3.429 + \mathcal{O}(\frac{m_{e}}{M_{\mu}})\right] \\ &= 2.31896 \cdot 10^{-13} + \mathcal{O}(\frac{m_{e}}{M_{\mu}}) \end{aligned}$$

Status of the QED β -function at five loops

Recently we have computed the $\beta^{\overline{MS}}(\overline{\alpha})$ in the quenched approximation $(A = A(\mu) = \frac{\alpha(\mu)}{4\pi})$

$$\beta^{\text{qQED}} = n_l \left[\frac{4}{3} A + 4 A^2 - 2 A^3 - 46 A^4 + \left(\frac{4157}{6} + 128 \zeta_3 \right) A^5 \right]$$

At the moment we are finishing the remaining five-loops diagrams proportional to n_l^2 and n_l^3 , the "renormalon" type contribution of order n_l^4 is simple and available since long . . .

<u>Conclusions</u>

- numerical and analytical methods help each other in computing the QED contributions to $(g-2)_{\mu}$
- the asymptotic contribution to the VP part of $(g-2)_{\mu}$ in order α^5 is is computed and supports purely numerical result of the Kinoshita group
- conversion formula for $\alpha^{OS}/\alpha^{\overline{\text{MS}}}$ is evaluated to four loops: it means that one could reexpress any (QED!) $\mathcal{O}(\alpha^5)$ result in terms of the runnung $\alpha^{\overline{\text{MS}}}$
- together with (soon to be completed) QED β-function in 5 loops this opens a way to investigate the five loop QED result with RG methods (see, e.g. A. Kataev, (2006)).