New Results in four and five Loop QED and QCD calculations

Konstantin Chetyrkin
with P. Baikov J. H. Kühn and C. Sturm

LOOPS \& LEGS 2008

Outline

0. Five-loop massless correlators: calculational status
1. * Vector (new!) and scalar correlators to order α_{s}^{4} for generic number of quark flavours N_{f}
2. $(g-2)_{\mu}$: new analytical results at order α^{5}
3. Progress in computing QED β-function in 5 loops
[^0]- Correlator of two currents:

$$
\Pi^{\mu \nu}(q, j)=i \int d x e^{i q x}\langle 0| T j^{\mu}(x) j^{\nu}(0)|0\rangle=\left(-g^{\mu \nu} q^{2}+q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)
$$

here: $j^{\mu}(x)$ electromagnetic heavy vector current ((as an example)

- Diagrammatically:

- Two limits are of interest:
- Expansion of the diagrams in the external momentum around $q^{2}=0$ \Longrightarrow vacuum diagrams (tadpoles) \longrightarrow front edge: 4 loops
- High energy limit
\Longrightarrow massless propagators \longrightarrow front edge:
5 loops/for absorptive part only/
4 loops/in general/

Tool Box

- IRR / Vladimirov, (78)/ + IR R^{*}-operation /K. Ch., Smirnov (1984)/ + resolved combinatorics /K. Ch., (1997)/
- reduction to Masters: "direct and automatic" construction of CF's through $1 / D$ expansion-made with BAICER—within the Baikov's representation for Feynman integrals ${ }^{1}$
- all 4-loop master p-integrals are known analytically /P. Baikov and K.Ch. (2004)/
- computing time and required resources: could be huge (the price for full automatization); to cope with it we use parallel FORM /Vermaseren, Retey, Fliegner, Tentyukov, ... $2000-\ldots$) and MANY computers... (see below)
* NO IBP identities are use at any step!
${ }^{1}$ Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378381,2003

$$
\begin{gathered}
R(s) \approx \Im \Pi(s-i \delta) \\
3 Q^{2} \Pi\left(q^{2}=-Q^{2}\right)=\int e^{i q x}\langle 0| T\left[j_{\mu}^{v}(x) j_{\mu}^{v}(0)\right]|0\rangle d x
\end{gathered}
$$

To conveniently sum the RG-logs one uses the Adler function:

$$
D\left(Q^{2}\right)=Q^{2} \frac{d}{d Q^{2}} \Pi\left(q^{2}\right)=Q^{2} \int \frac{R(s)}{\left(s+Q^{2}\right)^{2}} d s
$$

or $\left(a_{s} \equiv \alpha_{s} / \pi\right)$

$$
R(s)=\frac{1}{2 \pi i} \int_{-s-i \delta}^{-s+i \delta} d Q^{2} \frac{D\left(Q^{2}\right)}{Q^{2}}=D(s)-\pi^{2} \frac{\beta_{0}^{2} d_{0}}{3} a_{s}^{3}+\ldots
$$

$d_{4}=n_{f}^{3}\left[-\frac{6131}{5832}+\frac{203}{324} \zeta_{3}+\frac{5}{18} \zeta_{5}\right] \quad$ ("renormalon" chain /M. Beneke 1993/)
$+n_{f}^{2}\left[\frac{1045381}{15552}-\frac{40655}{864} \zeta_{3}+\frac{5}{6} \zeta_{3}^{2}-\frac{260}{27} \zeta_{5}\right]$ /Baikov, Kühn, K.Ch. (2002)/

$$
+n_{f}\left[-\frac{13044007}{10368}+\frac{12205}{12} \zeta_{3}-55 \zeta_{3}^{2}+\frac{29675}{432} \zeta_{5}+\frac{665}{72} \zeta_{7}\right]
$$

$$
+\left[\frac{144939499}{20736}-\frac{5693495}{864} \zeta_{3}+\frac{5445}{8} \zeta_{3}^{2}+\frac{65945}{288} \zeta_{5}-\frac{7315}{48} \zeta_{7}\right]
$$

Interesting features:

1. irrationals up to ζ_{7} (understandable from the structure of the masters)
2. no ζ_{4} and/or ζ_{6} (expected but mysterious!)

2005-2008: Three $\mathcal{O}\left(\alpha_{\mathrm{s}}^{4}\right)$ Calculations

used CPU time (measured in terms of a one 3 GH PC)

- QCD: scalar $R^{S S}(s):(\approx 5$ years)
- Quenched QED: β-function (≈ 25 years)
- QCD: $R^{V V}(s)$ ($\approx \mathbf{6 0}$ years)

In Reality

calculations of $R^{V V}(s)$ were made mainly on HP XC4000 supercomputer of the Karlsruhe University (claster of Dual Core AMD Opteron 2.6 GH). It took about 60 CPU years, but only around 5 calendar months (up to $160=(20$ "octets" of processors running parallel FORM) were simultaneously used).

To compare: scalar $R^{S S}(s)$ took about 5 CPU years and QQED about 25 CPU years, with calendar time about 1 year for each (but with older processors and less developed software).

- Dirac theory predicts for a lepton $l=e, \mu, \tau$:

$$
\vec{\mu}_{l}=g_{l}\left(\frac{e}{2 m_{l} c}\right) \vec{s}, \quad g_{l}=2
$$

- quantum loops \Longrightarrow deviations from $g_{l}=2$:

$$
\begin{gathered}
g_{l}=2\left(1+a_{l}\right) \\
\min _{\mathrm{p}}^{\mathrm{q}}=\bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{\mathrm{E}}\left(q^{2}\right)+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 m_{\mu}} F_{\mathrm{M}}\left(q^{2}\right)\right] u(p)
\end{gathered}
$$

- in the static limit

$$
F_{E}(0)=1 ; \quad F_{M}(0)=a_{\mu}
$$

The present experimental value is terrifically accurate:

$$
a_{\mu}=116592080(63) \cdot 10^{-11}
$$

0.5 parts per billion!! (E821: Final Report: PRD73 (2006) 072003)

The current theory prediction shows an "interesting but not yet conclusive discrepancy ${ }^{1 \prime}$ " of about 3σ (or 1.8σ if ones switches to the τ-data in order to describe the hadronic effects)
${ }^{1}$ A. Höcker, W. Marciano, PDG, July of 2007

Higher order corections to a_{μ} are basically classified into 4 classes:

The QED part is known to 4 loops 1 (and numericaly leading terms in 5 !)
The EW part is known to 2 loops
The Hadronic part is known but with limited accuracy ...
${ }^{1}$ and four loops contribute as much as $378.5 \cdot 10^{-11!!!}$ (cmp. to experimental uncertainty $\sim 70 \cdot 10^{-11}$!)

The QED contribution to a_{μ}

$\begin{aligned} a_{\mu}{ }^{\text {QED }} & =(1 / 2)(\alpha / \pi) \quad \text { Schwinger 1948 } \\ & +0.765857410(27)(\alpha / \pi)^{2}\end{aligned}$
Sommerfield; Petermann; Suura \& Wichmann '57; Elend '66; MP '04
$+24.05050964(43)(\alpha / \pi)^{3}$
Barbieri, Laporta, Remiddi ... ; Czarnecki, Skrzypek; MP '04;
Friot, Greynat, de Rafael '05
$+130.805(8)(\alpha / \pi)^{4}$ Revised!
Kinoshita \& Lindquist '81, ... , Kinoshita \& Nio '04, '05; Aoyama, Hayakawa, Kinoshita \& Nio, June 2007
$+663(20)(\alpha / \pi)^{5} \quad$ In progress
Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita \& Nio March '06.

Adding up, I get:

$$
\begin{aligned}
& a_{u}{ }^{\text {QED }}= 116584718.10(14)(08) \times 10^{-11} \\
& \quad \text { mainly from } 5 \text {-loop unc } \\
& \text { with } \alpha=1 / 137.035999068(96) \text { from new } \delta \alpha \\
&\hline 0.7 \mathrm{ppb}]
\end{aligned}
$$

There are 2 types of numerically leading enhanced with logs of large ratio $\frac{M_{\mu}}{m_{e}}=206.7682838$ pure QED contributions:

LL: light by light

$$
\left(\frac{2 \pi^{2}}{3} \ln \left(\frac{M_{\mu}}{m_{e}}\right)+\ldots\right)\left(\frac{\alpha}{\pi}\right)^{3}
$$

VP: vacuum polarization:

$\left(\frac{1}{3} \ln \left(\frac{M_{\mu}}{m_{e}}\right)+\ldots\right)\left(\frac{\alpha}{\pi}\right)^{2}$

We will consider mixed VP contributions:

$$
D_{R}^{\mu \nu}\left(-q^{2}, m_{e}^{2}, \alpha\right)=\frac{-i g_{\mu \nu}}{q^{2}}\left(d_{R}=\frac{1}{1+\Pi_{R}\left(-q^{2}, m_{e}^{2}, \alpha\right)}\right)
$$

$=$ the photon propagator composed from

$$
D^{\mu v}{ }_{R}\left(q^{2}, m_{e}^{2}, \alpha\right)
$$

As is well-known (B.E Lautrup and E.de Rafael NPN 70 (1974) 317)

$$
a_{\mu}(M / m, \alpha)=\frac{\alpha}{\pi} \int_{0}^{1} \mathrm{~d} x(1-x)\left[d_{R}\left(\frac{x^{2}}{1-x} \frac{M^{2}}{m^{2}}, \alpha\right)-1\right] \star
$$

Important: $\Pi_{R}\left(Q^{2} / m^{2}, \alpha\right)=\Pi_{R}^{\infty}\left(Q^{2} / m^{2}, \alpha\right)+\mathcal{O}\left(m^{2} / Q^{2}\right)$ and if one uses only Π_{R}^{∞} in (\star) then the resulting error in a_{μ} will only be of order m / M or higher!

Some instructive hystorical examples

In 1991 R, Faustov et al., found (using some results from ${ }^{1}$) that the contribution of

$$
a_{\mu}=\left[0.923+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right]\left(\frac{\alpha}{\pi}\right)^{4}
$$

was in disagreement to the numeric result by
(T. Kinoshita, B. Nizik, Y.Okamoto (1990)) $a_{\mu}=1.4416(18)\left(\frac{\alpha}{\pi}\right)^{4} \quad(\star)$

The problem came from a theoretical error in ${ }^{1}$. After its correction (T. Kinoshita, H Kawai, Y.Okamoto (1991)) the new result is in good agreeement to (*)

$$
a_{\mu}=\left[1.452570+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right]\left(\frac{\alpha}{\pi}\right)^{4}
$$

1 J. Calmet and E. De Rafael, (1975)

Hystory: continuation I

quenched approximation for the photon propagator:

Initial asymptotic result (D. Broadhurst, A. K. Lataev, O. Tarasov (1994)) was in disagreement to that by (T. Kinoshita, B. Nizik, Y.Okamoto (1990))

$$
-0.29087^{\text {asym }} \Longleftrightarrow-0.7945(202)^{\text {num }}
$$

after recalculation (with a new, improved integration routine VEGAS instead of RIWARD and much better statistics) the result changed to (T. Kinoshita, (1993):

$$
-0.2415(19)
$$

Hystory: continuation II

Two years later (1995) D. Broadhurst and P. Baikov improved the asymptoic result (by combining the asymptoic and threshold result via a new Padè-based method) and arrived to

$$
-0.230696(5)^{\text {impr. asym., } 1995} \Longleftrightarrow-0.2415(19)^{\text {num }, 1993}
$$

"The problem was traced to round-off errors caused by insufficient number of effective digits in real*8 arithmetic in carrying out the renormalization ... This was resolved by going over to the real *16 arithmetics." /Kinoshita, Nio, (2004)/

The new result (T. Kinoshita, M Nio (1999)) is in good agreeement to the improved asymptotic one:

$$
-0.230696(5)^{\text {impr. asym.,1995 }} \Longleftrightarrow-0.230596(416)^{\text {num, } 1999}
$$

On-Shell versus $\overline{\text { MS }}$ Schemes for α

Traditionally in calculations of a_{ℓ} everybody uses the classical OS-scheme: all lepton masses are on-shell ones and the charge renormalization is fixed by the condition:

$$
\Pi^{O S}\left(Q=0, m, \alpha^{O S}\right) \equiv 0
$$

In QED different schemes are easily related through the scheme invariant concept of the invariant charge:

$$
\frac{\alpha^{O S}}{1+\Pi^{O S}\left(Q, m, \alpha^{O S}\right)}=\frac{\bar{\alpha}}{1+\bar{\Pi}(Q, m, \bar{\alpha})}
$$

Thw important facts:

- The $\overline{\mathrm{MS}}$-renormalzed photon self-energy $\bar{\Pi}(Q, m, \bar{\alpha})$ does not have any $\ln \left(m_{e}\right)$ terms at large Q (they apear only $\mathcal{O}\left(m_{e}^{4} / Q^{4}\right)$ level)
- It does cointain $\ln \left(m_{e} / \mu\right)$ at $Q=0$

Thus, in order to consruct $\Pi_{R}^{O S}$ in four-loop one needs 3 pieces:

- the value of $\bar{\Pi}\left(Q^{2}, m=0, \bar{\alpha}\right)$ at 4 loops \Longleftarrow easlily computable with BAICER (not so many dots) (P. Baikov, 2000-2008)
- $\bar{\Pi}(Q=0, m, \bar{\alpha})$ at 4 loops \Longleftarrow easlily computable these days (not so many dots)

As a by-product we also get the 4-loop relation between OS- and $\overline{\mathrm{MS}}$ renormalized α :

$$
\alpha^{O S}=\frac{\bar{\alpha}}{1+\bar{\Pi}\left(Q^{2}=0, m, \bar{\alpha}\right)}
$$

- the $\overline{\mathrm{MS}} \Longleftrightarrow$ On-Shell relation for quark masses at 3 loops (M. Steinhauser, K.Ch, (1999); K. Melnikov, T. van Ritbergen (2000))

The four-loop piece of $\Pi_{R}^{O S}$ reads $\left(L_{Q m}=\ln \frac{Q^{2}}{m_{e}^{2}}, \quad a_{n}=\operatorname{PolyLog}[n, 1 / 2]\right)$
$\Pi_{4}^{O S}=$

$$
+\quad n_{l}\left[-\frac{71189}{34560}-\frac{157}{72} \pi^{2}-\frac{59801}{129600} \pi^{4}+\frac{6559}{320} \zeta_{3}-\frac{1}{24} \pi^{2} \zeta_{3}-\frac{1603}{120} \zeta_{5}\right.
$$

$$
-\frac{35}{4} \zeta_{7}+\frac{23}{128} \ell_{Q m}+\frac{59}{12} \pi^{2} \ln 2+\frac{106}{675} \pi^{4} \ln 2-\frac{1559}{1080} \pi^{2} \ln ^{2} 2+\frac{32}{135} \pi^{2} \ln ^{3} 2
$$

$$
\left.+\frac{1559}{1080} \ln ^{4} 2-\frac{32}{225} \ln ^{5} 2+\frac{1559}{45} a_{4}+\frac{256}{15} a_{5}\right]
$$

$$
+n_{l}^{2}\left[\frac{20099}{4725}-\frac{179}{324} \pi^{2}-\frac{9491}{28800} \pi^{4}+\frac{1054517}{50400} \zeta_{3}-\frac{5}{3} \zeta_{3}^{2}-\frac{95}{18} \zeta_{5}\right.
$$

$$
-\frac{7}{18} \ell_{Q m}-\frac{11}{12} \zeta_{3} \ell_{Q m}+\frac{5}{3} \zeta_{5} \ell_{Q m}-\frac{1}{48} \ell_{Q m}^{2}+\frac{16}{27} \pi^{2} \ln 2-\frac{1001}{720} \pi^{2} \ln ^{2} 2
$$

$$
\left.+\frac{1001}{720} \ln ^{4} 2+\frac{1001}{30} a_{4}\right]
$$

$$
+n_{l}^{3}\left[\frac{75259}{68040}+\frac{8}{405} \pi^{2}-\frac{15109}{22680} \zeta_{3}-\frac{5}{9} \zeta_{5}-\frac{151}{162} \ell_{Q m}+\frac{19}{27} \zeta_{3} \ell_{Q m}\right.
$$

$$
\begin{equation*}
\left.+\frac{11}{72} \ell_{Q m}^{2}-\frac{1}{9} \zeta_{3} \ell_{Q m}^{2}-\frac{1}{108} \ell_{Q m}^{3}\right] \tag{1}
\end{equation*}
$$

The resulting contributions to the a_{μ} coming from genuily 4-loop terms in the photon propagator read ($L_{M m}=\ln \frac{M_{\mu}}{m_{e}}$)

$$
\begin{gather*}
\left(\frac{\alpha}{\pi}\right)^{5}\left[n_{l}^{3}\left(-0.591+0.546 L_{M m}-0.177 L_{M m}^{2}+0.037 L_{M m}^{3}\right)\right. \tag{1}\\
+n_{l}^{2}\left(\left(0.924-0.342 L_{M m}+0.0417 L_{M m}^{2}\right)+n_{l}\left(1.210-0.1796 L_{M m}\right)\right]
\end{gather*}
$$

they correspond to diagrams:

+ about a fifty more

Subset	analytical	numerical	
$I(j)$	-1.21429	-	
$I(i)$	+0.25237	-	
$I(g)+I(h)$	+1.50112	-	
$I(f)$	+2.89019	$+2.88598(9)$	\checkmark
$I(c)$	+4.81759	$+4.74212(14)$	\checkmark
$I(d)$	+7.44918	$+7.45270(88)$	\checkmark
$I(e)$	-1.33141	$-1.20841(70)$	\checkmark
$I(b)$	+27.7188	$+27.69038(30)$	\checkmark
$I(a)$	+20.1832	$+20.14293(23)$	\checkmark

(all numerics from M. Nio, T. Aoyama, M. Hayakawa and T. Kinoshita (2007) and T. Kinoshita and M. Nio, (2006)

Numerically all (VP,mixed) 5-loop terms summed together lead to a tiny contribution:

$$
\begin{gathered}
a_{\mu}(\mathrm{VP}, \text { mixed,4-loops })=\left(\frac{\alpha}{\pi}\right)^{5}\left[3.429+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right] \\
=2.31896 \cdot 10^{-13}+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)
\end{gathered}
$$

Status of the QED β-function at five loops

Recently we have computed the $\beta^{\overline{\mathrm{MS}}}(\bar{\alpha})$ in the quenched approximation $\left(A=A(\mu)=\frac{\alpha(\mu)}{4 \pi}\right)$

$$
\beta^{\mathrm{qQED}}=n_{l}\left[\frac{4}{3} A+4 A^{2}-2 A^{3}-46 A^{4}+\left(\frac{4157}{6}+128 \zeta_{3}\right) A^{5}\right]
$$

At the moment we are finishing the remaining five-loops diagrams proportional to n_{l}^{2} and n_{l}^{3}, the "renormalon" type contribution of order n_{l}^{4} is simple and available since long . . .

Conclusions

- numerical and analytical methods help each other in computing the QED contributions to $(g-2)_{\mu}$
- the asymptotic contribution to the VP part of $(g-2)_{\mu}$ in order α^{5} is is computed and supports purely numerical result of the Kinoshita group
- conversion formula for $\alpha^{O S} / \alpha^{\overline{\mathrm{MS}}}$ is evaluated to four loops: it means that one could reexpress any (QED!) $\mathcal{O}\left(\alpha^{5}\right)$ result in terms of the runnung $\alpha \overline{\mathrm{MS}}$
- together with (soon to be completed) QED β-function in 5 loops this opens a way to investigate the five loop QED result with RG methods (see, e.g. A. Kataev, (2006)).

[^0]: * applications of the result for $\sigma_{t o t}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$ and τ-decays will be discussed in the talk by J. H. Kühn tomorrow

