Recent developments in Sherpa

Frank Krauss

IPPP Durham

Loops & Legs 08, Sondershausen, 21.4.2008

イロト イ団ト イヨト イヨト

2

IPPP

F. Krauss Recent developments in Sherpa

Outline

- 1 The next generation event generators
- Introducing SHERPA
- Signals & backgrounds at the parton level
- From parton level to exclusive studies at hadron level
- 5 Forthcoming attractions
- 6 Modelling hadron/tau decays

Conclusions

∃ >

< 17 ▶

Why simulate events?

- Many interesting signals at the LHC: Higgs (or alternative EWSB), SUSY, ED's, ...
- But: Severe backgrounds in nearly all channels, (almost always with large influence of QCD)

 \implies depend on detailed understanding of QCD.

- Examples:
 - Central jet-veto in VBF (Higgs)
 - Multi-jet backgrounds for SUSY (e.g. Z+jets)
- Todays signals = tomorrows backgrounds.

イロト イ団ト イヨト イヨト

Why does anyone write a new event generator? New tools on the market: Pythia8, Herwig++, Sherpa

Reflecting increased needs (precision, new physics, etc.):

- getting rid of old errors (having new ones)
- easier implementation of new physics models
- incorporate new, better methods!
- systematic inclusion of HO QCD

A (1) > A (1) > A

IPPP

F. Krauss

Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

• Multiple interactions:

Beyond factorization: Modeling.

• Hadronization:

Non-perturbative QCD: Modeling.

IPPP

Introducing SHERPA

T.Gleisberg, S.Höche, F.K., A.Schälicke, S.Schumann and J.C.Winter, JHEP 0402 (2004) 056

- New event generator, written from scratch in C++.
- Fully automated matrix element generation,
- Parton shower implementation (similar to PYTHIA), new improved parton shower formulations in preparation,
- Unique feature: Multijet ME+PS merging,
- Cluster hadronization model (still to be tuned to data), also interface to string fragmentation of Pythia,
- Hadron and tau decays,
- Underlying event according to old Pythia model, new model based on BFKL evolution to be released.

E. Krauss

Automated cross section calculation AMEGIC++

F.K., R.Kuhn, G.Soff, JHEP 0202 (2002) 044.

- Uses helicity/recursion methods;
- Helicity method supplemented with "factoring out" (taming the factorial growth)
- Phase space integration through multi-channeling (i.e. one phasespace mapping/Feynman diagram)
- Implemented & tested models: SM, SM+AGC, THDM, MSSM, ADD.
- Tested in > 1000 SM & > 500 MSSM channels.
- Still under development (towards higher multis, more models, ...)

Implementing CSW recursion relations: A snaphot

F.Cachazo, P.Svrcek and E.Witten, JHEP 0409 (2004) 006

• Obtained summing over colours and helicities, sampling much better

Jet cross sections @ LHC, $k_{\perp}^{\min} = 20 \text{GeV}$

Process	helicity	MHV where possible	MHV only
			$(\leq 2 \text{ quark lines})$
$jj \rightarrow jj$	745.85 µb±0.10%	745.85 μb±0.10%	
	57 s	44 s	
jj → jjj	81.274 µb±0.20%	81.274 μb±0.20%	
	826 s	166 s	
$gg \rightarrow gggg$	10.112 µb±0.23%	10.145 µb±0.23%	
	1.5 ks	0.6 ks	
jj → jjjj	23.23 µb±0.27%	23.245 μb±0.26%	23.208 µb±0.26%
	35 ks	7.6 ks	5.8 ks
$gg \rightarrow ggggg$	2.6592 μb±0.16%	2.6915 μb±0.15%	
	131 ks	41 ks	
jj → jjjjj	not possible	7.3829 μb±0.25%	7.3294 μb±0.17%
		970 ks	295 ks

IPPP

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, in preparation

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (cross sections):

	12	11		Cross section [pb]				
	=	11	10	9	8		n	
	5000	3500	2500	2000	1500	GeV]	\sqrt{s} [G	
	0.019(2)	0.057(5)	0.101(7)	0.305(2)	0.755(3)	(Comix	
			0.097(6)	0.30(2)	0.70(4)	ni (2002)	Malto	
					0.719(19)	n	Alpge	
	Number of jets							σ [μb]
6	5	4	3	2	1	0	CD jets	$b\bar{b} + QC$
0.023(2)	0.0544(6)	0.1500(8)	0.459(2)	1.826(8)	8.83(2)	4780(5)		Comix
0.0215(8)	0.053(1)	0.150(2)	0.459(2)	1.822(9)	8.83(1)	4760(6)	N	ALPGEN
				1.817(6)	8.84(2)	4730(4)	2++	AMEGIC-
	5 0.0544(6) 0.053(1)	4 0.1500(8) 0.150(2)	umber of jet 3 0.459(2) 0.459(2)	2 1.826(8) 1.822(9) 1.817(6)	1 8.83(2) 8.83(1) 8.84(2)	0 476(5) 476(6) 473(4)	CD jets N C++	$\sigma \ [\mu b]$ $b\bar{b} + QC$ Comix ALPGEN AMEGIC-

IPPP

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, in preparation

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (phase space performance):

IPPP

F. Krauss

From partons to hadrons

- Experimental definition of jets based on hadrons.
- But: Hadronization through phenomenological models

(need to be tuned to data).

ME vs. PS

- MEs: hard, large-angle emissions; interferences.
- PS: soft, collinear emissions; resumation of large logarithms.
- Combine both, avoid double-counting.

E. Krauss

Combining MEs & PS: LO-Merging

S.Catani, F.K., R.Kuhn and B.R.Webber, JHEP **0111** (2001) 063 F.K., JHEP **0208** (2002) 015

(日) (同) (三) (三)

- Want:
 - All jet emissions correct at tree level + LL,
 - Soft emissions correctly resummed in PS
- Method:
 - Separate Jet-production/evolution by Q_{jet} (k_{\perp} algorithm).
 - Produce jets according to LO matrix elements
 - re-weight with Sudakov form factor + running α_s weights,
 - veto jet production in parton shower.
- Process-independent implementation.

n-jet rates @ NLL Sudakov weights S.Catani et al. Phys. Lett. B269 (1991) 432 Example: $\gamma^* \rightarrow q\bar{q}g$ At NLL-Accuracy $\mathcal{R}_2(Q_{\text{iet}}) = \left[\Delta_q(E_{\text{c.m.}}, Q_{\text{iet}})\right]^2$ $\mathcal{R}_3(Q_{\text{iet}}) = 2\Delta_q(E_{\text{c.m.}}, Q_{\text{iet}})$ $\cdot \int \mathrm{d}q \left[\alpha_s(q) \Gamma_q(E_{\mathrm{c.m.}},q) \frac{\Delta_q(E_{\mathrm{c.m.}},Q_{\mathrm{jet}})}{\Delta_q(q,Q_{\mathrm{iet}})} \right]$ $\mathcal{W}_{\mathrm{Sud}} = \frac{\alpha_{\mathfrak{s}}(q)}{\alpha_{\mathfrak{s}}(Q_{\mathrm{iet}})} \cdot \Delta_q(E_{\mathrm{c.m.}}, Q_{\mathrm{jet}})$ $\Delta_q(q,Q_{\rm jet})\Delta_g(q,Q_{\rm jet})$ $\frac{\Delta_q(E_{\rm c.m.},\,Q_{\rm jet})}{\Delta_q(q,\,Q_{\rm jet})}\Delta_q(q,\,Q_{\rm jet})\Delta_g(q,\,Q_{\rm jet})$

<ロト <回ト < 回ト < 回ト

IPPP

Algorithm as scale-setting prescription

- Example: p_{\perp} distribution of jets @ Tevatron
- Consider exclusive W + 1- and W + 2-jet production

Comparison with MCFM; J.Campbell and R.K.Ellis, Phys. Rev. D 65 (2002) 113007 in : F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

イロト イポト イヨト イヨト

IPPP

F. Krauss

IPPP

Combining MEs & PS: Independence on Q_{jet}

F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

Example: p_{\perp} of W in $p\bar{p} \rightarrow W + X$ @ Tevatron $Q_{\rm jet} = 10 \, {
m GeV}$ $Q_{\rm iet} = 30 \, {
m GeV}$ $Q_{\rm jet} = 50 \, {
m GeV}$ do/dp _w [pb/GeV] 10 _____0 dơ/dp _w [pb/GeV] 0 __0 5/dp _w [pb/Ge 10 10 10 10 10-2 10-2 10 160 180 100 120 p w/ GeV p_{IW}/GeV p_{IW}/GeV

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

IPPP

Azimuthal decorrelations of jets at the Tevatron

Idea

• Check QCD radiation pattern

- 《日》 《聞》 《臣》 《臣》 《日》

IPPP

F. Krauss Recent developments in Sherpa

Comparison with data from Tevatron

p_{\perp} of Z-bosons बे∂ 10 ~_ 위문 de Se · 비미 미미 10 CDR CDE 10 1 10 10 n 20 160 180 200 n 5 10 15 20 25 30 35 45 50 40 80 100 120 140 4٨ P_{1Z}/GeV P_{IZ}/GeV

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

IPPP

F. Krauss

メロトメ 御と メヨトメヨト 三国 うつい

IPPP

F. Krauss

Comparison with data from Tevatron

```
p_{\perp} of Z-bosons in p \bar{p} \rightarrow Z + X
```

Data from CDF, Phys. Rev. Lett. 84 (2000) 845

IPPP

F. Krauss

IPPP

F. Krauss

IPPP

IPPP

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

IPPP

F. Krauss

IPPP

A new feature: Merging in decay chains

Example: top-pair production @ LHC

▲口×▲圖×▲注×▲注× 注 のQで

IPPP

F. Krauss

Dipole shower

Implemented in Ariadne (L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

Upshot

- Expansion around soft logs, particles always on-shell $d\sigma = \sigma_0 \frac{C_F \alpha_s(k_\perp^2)}{2\pi} \frac{dk_\perp^2}{k_\perp^2} dy.$
- Always color-connected partners (recoil of emission)

 \implies emission: 1 dipole \rightarrow 2 dipoles.

 Quantum coherence on similar grounds for angular and k_T-ordering.

F. Krauss

A (1) > A (1) > A

Dipole shower

Implemented in Ariadne (L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

IS Radiation

• There is none! Treat radiation in DIS as FS radiation between

reat radiation in DIS as FS radiation between remnant & quark

Thus, no real Dipole Shower for pp collisions.

 Cut FS phase space of remnants:

IPPP

F. Krauss

Dipole shower: New developments

J.Winter & F.K., arXiv:0712.3913 [hep-ph]

Initial state dipole showers

- Complete perturbative formulation.
- Dipoles and their radiation associated to IS-IS, IS-FS and FS-FS colour lines.
- Beam remnants kept outside evolution.
- Onshell kinematics, evolution in k_{\perp} .

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

F Krauss

Dipole shower: New developments

J.Winter & F.K., arXiv:0712.3913 [hep-ph]

- Testbed: DY production.
- P_T spectrum of Z^0 boson.
- Mainly recoils vs. 1st emission: by construction: ME-corrected.

(日) (同) (三) (三)

E. Krauss

A new parton shower approach

Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;

Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,

and S.Schumann& F.K., JHEP 0803 (2008) 038.

- Catani-Seymour dipole subtraction terms as universal framework for QCD NLO calculations.
- Factorization formulae for real emission process:
- Full phase space coverage & good approx. to ME.

Example: final-state final-state dipoles

IPPF

F. Krauss

A new parton shower approach

Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;

Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,

and S.Schumann& F.K., JHEP 0803 (2008) 038.

IPPP

F. Krauss

A new parton shower approach

Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;

Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,

and S.Schumann& F.K., JHEP 0803 (2008) 038.

IPPP

F. Krauss

First steps towards NLO

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

IPPP

F. Krauss

First steps towards NLO

IPPP

F. Krauss

First steps towards NLO

Automated Catani-Seymour subtraction T.Gleisberg& F.K., eprint 0709.2881 DELPHI DELPHI LO NLO LO 1/N de/d(1-Thrue da/d(Maj 0,3 Moi LO NLO [dd] [db] - LO i0 60 80 100 1 p_(first jet) [GeV] η(first jet)

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ▲ の へ ⊙

IPPP

Recent developments in Sherpa

F. Krauss

Soft physics simulation in Sherpa

- Implemented a new version of the cluster fragmentation model;
- a new module for the simulation of hadron and τ decays (special emphasis on τ, B and D decays, including mixing, CP-violation etc.);
- a new module for the simulation of photon radiation in hadron decays based on the YFS approach;
- all in current, new release, Sherpa 1.1.

E. Krauss

(日) (同) (三) (三)

Example (1): Spin correlations in $H \rightarrow \tau^+ \tau^-$

Angle of planes of decay products $(pi\nu)$ in c.m.s

- ◆ ロ > ◆ 圖 > ◆ 圖 > ▲ 圖 - 約 Q C

IPPP

F. Krauss

IPPP

F. Krauss

イロン イロン イヨン イヨン

3

IPPP

F. Krauss

IPPP

IPPP

Summary & outlook

- Many interesting signals at LHC "spoiled" by QCD.
- Simulation tools mandatory for success of LHC
- Various new OO-projects in C++.
- New methods of merging of ME& PS extremely powerful (Complementary to MC@NLO)
- Sherpa a versatile tool new features becoming available: higher ME multis, new showers, new Underlying Event model (based on k⊥-factorization), more BSM models.
- Plan: Go to NLO
 - automatic dipole subtraction implemented and tested
 - build library of virtual corrections.

E. Krauss

(日) (同) (三) (三)