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0 Introduction

N = 4 SYM

• The AdS/CFT duality relates N = 4 SYM to IIB string

theory on AdS5×S5. It is a weak/strong-coupling duality.

• The large N limit of the SYM theory can be described by spin

chains.

Derivative operators

• Built from scalar fields X and covariant derivatives.

• The derivatives act as magnons moving on the chain of scalars.

Large spin all-loops anomalous dimension

• We start from an all-loops conjecture for the Bethe ansatz.

A large spin continuum limit yields an integral equation

for the density of Bethe roots.

• The energy grows logarithmically with the spin. It is given by sums

of zeta values respecting a principle of maximal transcenden-

tality.

• We discuss dressing phases (integrable modifications of the

Bethe ansatz) that do not violate transcendentality.

• A kernel from string theory reverses the sign of certain con-

tributions to the energy. At four loops, agreement with field

theory is obtained.

Outloook

• Limitations of the model — Wrapping



1 Spin Chain Picture for BMN Operators

Composite operators are characterised by

• Lorentz spin,

• SU(4) Dynkin labels,

• dimension ∆(g2, N).

Two-point functions of scalar singlets O1, O2 obey

< O1(1) Ō2(2) > = 0 , ∆1 6= ∆2 ,

< O1(1) Ō1(2) > =
c(g2, N)

(x2
12)

∆(g2,N)
, x12 = x1 − x2 .

SU(2)-sector BMN operators

OI(ΠX , k, p) = Πi Tr(X li) Tr(Φ2X
(k−p)Φ2X

p) ,

OII(ΠX , k, p) = Πi Tr(X li) Tr(Φ2X
(k−p))(Φ2X

p) .

v = ([X̄, Φ̄2][Φ2, X ])
2
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• Large N : Spin chain picture, X, Φ2 as up and down spins. The

one-loop interaction defines a Hamiltonian MZ ht/0212208, BKS

ht/0303060.

• Higher order Feynman diagrams give a perturbation.

• Wrapping: The interaction length becomes equal to or greater

than the number of fields in an operator.



2 Spin Chain Picture for Twist Operators

Derivative sector:

{s1, s2, s3, . . .} = Tr
(

(Ds1

z X)(Ds2

z X)(Ds3

z X) . . .
)

• X is a complex scalar field of the N = 4 SYM theory with SU(N)

gauge group. Dµ = ∂µ + i gY M Aµ.

• The operators carry traceless symmetric Lorentz representation of

spin s = s1 + s2 + s3 + . . . ; project z = x1 + ix2.

• Loop diagrams define a Hamiltonian that can transfer derivatives

from one site to another. Free lines do not (as long as we look at

a certain tensor component).

• In the large N limit this defines a nearest neighbour interaction.

Two-site Hamiltonian.

We may view the derivatives as “magnons” moving on the sites of a

spin chain.

At one loop (B):

H(0) =
L
∑

i=1

H(0)
i

H(0)
i ({s1, s2} → {s1, s2}) = h(s1) + h(s2) ,

H(0)
i ({s1, s2} → {s1 − d, s2 + d}) = − 1

|d|



3 Bethe Equations

• The one-loop Hamiltonian above defines the Heisenberg XXX chain

with spin −1
2.

The dynamics of the system is captured by the Bethe ansatz
(

uk + i
2

uk − i
2

)L

=
∏

j 6=k

(

uk − uj − i

uk − uj + i

)

, j, k ∈ {1, . . . , s} ,

s
∏

k=1

(

uk + i
2

uk − i
2

)

= 1 , E =

s
∑

k=1

(

i

uk + i
2

− i

uk − i
2

)

.

All-loops conjecture (S,BS):

u ± i

2
= x± +

g2

2x± , g =

√
λ

4π

The deformed system is
(

x+
k

x−
k

)L

=
∏

j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2/2x+
k x−

j

1 − g2/2x−
k x+

j

,

s
∏

k=1

(

x+
k

x−
k

)

= 1 , E(g) =
s
∑

k=1

(

i

x+
k

− i

x−
k

)

.

• Valid only for infinite spin chain length!



4 Some One-Loop Solutions for L = 2

The results of KLOV may be reproduced from the Bethe ansatz. The

large spin limit of the universal anomalous dimension should connect

via the AdS/CFT duality to the prediction by GKP.

• There are only solutions for even spin s. The roots are all real

and symmetrically distributed around zero. We label them as

u−s/2, . . . , u−1, u1, . . . , us/2.

• For k > 0 we plot ρk = 1
uk−uk−1

against (k − 1)/s, similarly for

k < 0.
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5 One-Loop Large Spin Limit

• The L = 2 case is exactly solvable for any (even) spin; the uk are

the zeroes of certain Hahn polynomials DKM ht/0210216.

• The roots are real and symmetrically distributed around zero. The

density peaks at the origin, there is no gap.

• The outermost roots grow as max{|uk|} → s/2.

• The mode numbers are ∓1 for negative/positive roots.

• For L > 2 there is more than one state. However, for the lowest

state the root distribution is again real and symmetric with n =

sign(u).

We take the logarithm of the Bethe equations

−i L log

(

uk + i
2

uk − i
2

)

= 2 π nk − i
∑

j 6=k

log
uk − uj − i

uk − uj + i
,

rescale u → s ū, expand in 1/s, and take a continuum limit:

0 = 2 π ε(ū) − 2 −
∫ 1/2

−1/2

dū′ ρ̄0(ū
′)

ū − ū′

One may solve by an inverse Hilbert transform:

ρ̄0(ū) =
1

π
log

1 +
√

1 − 4 ū2

1 −
√

1 − 4 ū2
=

2

π
arctanh

(

√

1 − 4 ū2
)

The one-loop energy is:

E0 =
1

s

∫ 1

2

−1

2

dū
ρ̄0(ū)

ū2 + 1
4 s2

= 4 log(s) + O(s0)



6 Asymptotic All-Loops Large Spin Limit

Split

ρ(u) = ρ0(u) − g2 E0

s
σ(u)

and integrate out the one-loop density.

Large spin limit:

0 = 2 π σ(u)

−2

∫ ∞

−∞
du′ σ(u′)

(u − u′)2 + 1

−
(

1

2

d

du

) [

1

x+(u)
+

1

x−(u)

]

+2i

∫ ∞

−∞
du′σ(u′)

d

du
log

(

1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)

• This is an asymptotic result, because L needs to grow with the

order in g2 to avoid “wrapping”.

• The final formula is L independent. ”Wrapping” is thus absent.



7 Weak Coupling and Transcendentality

We introduce the Fourier transform σ̂(t) of the fluctuation density

σ(u)

σ̂(t) = e−
t

2

∫ ∞

−∞
du e−itu σ(u) .

The integral equation becomes

σ̂(t) =
t

e t − 1

[ J1(2 g t)

2 g t
−

− 4 g2

∫ ∞

0

dt′ K̂(2 g t, 2 g t′) σ̂(t′)
]

,

with the non-singular kernel

K̂(t, t′) =
J1(t) J0(t

′) − J0(t) J1(t
′)

t − t′
.

The energy is

f(g) =
E(g)

log(s)
= 8 g2 − 64 g4

∫ ∞

0

dt σ̂(t)
J1(2 g t)

2 g t
.

The integral equation is of Fredholm II type. One may solve by iter-

ation:

σ̂(t) =
1

2

t

et − 1
− g2

(

1

4

t3

et − 1
+ ζ(2)

t

et − 1

)

+ . . . ,

where we have used

ζ(n + 1) =
1

n!

∫ ∞

0

dt tn

et − 1
.



We find

f(g) = 8 g2 − 16 ζ(2) g4 +
(

4 ζ(2)2 + 12 ζ(4)
)

8 g6

−
(

4 ζ(2)3 + 24 ζ(2)ζ(4) − 4 ζ(3)2 + 50 ζ(6)
)

16 g8 + . . .

or, alternatively:

f(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 −

(

73

630
π6 − 4ζ(3)2

)

16g8 + . . .

• Agrees with KLOV up to three loops (in the large spin limit their

harmonic sums become zeta functions).

The result obeys a principle of uniform transcendentality:

The l-loop contributions have degree of transcendentality 2 l - 2.



8 Dressing Kernels

The higher-loop Bethe equations receive corrections KMMZ, BDS,

AFS, BK:
(

x+
k

x−
k

)L

=
S
∏

j=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp
(

2iθ(uk, uj)
)

,

For perturbative string theory write the dressing phase as

θ(uk, uj) =
∞
∑

r=2

∞
∑

s=r+1

cr,s(g)
(

q̃r(uk) q̃s(uj) − q̃s(uk) q̃r(uj)
)

.

The q̃r(u) are the higher conserved charges. The strong-coupling ex-

pansion of cr,s within string theory is

cr,s(g) =
∞
∑

n=0

c(n)
r,s g1−n.

Proposal for the all-order strong-coupling expansion:

c(n)
r,s =

(

1 − (−1)r+s
)

ζ(n)

2(−2π)n Γ(n − 1)
(r − 1)(s − 1) ∗

∗ Γ[12(s + r + n − 3)] Γ[12(s − r + n − 1)]

Γ[12(s + r − n + 1)] Γ[12(s − r − n + 3)]
,

Singular for n = 0, 1, when

c(0)
r,s = δr+1,s , c(1)

r,s = −
(

1 − (−1)r+s
)

π

(r − 1)(s − 1)

(s + r − 2)(s − r)
.

(The latter are the AFS and BT,HL terms, respectively.)

Based on:

• n = 0, 1: available data

• for even n: crossing symmetry (J,BHL)

• for odd n: natural choice



Can we interpolate to weak coupling in order to recompute f(g)

with this dressing kernel?

Ψ (z) = ∂z log Γ (z) has the asymptotic expansion (z >> 0)

Ψ(1 + z) = log z +

∞
∑

n=1

cn

zn
, cn = −Bn

n
= (−1)nζ(1 − n) ,

while the expansion around z = 0 reads

Ψ(1 + z) = −γE +
∞
∑

k=1

c̃k zk, c̃k = −(−1)kζ(1 + k) .

The expansion coefficients for large and small z are almost the same!

cn = −c̃−n

In our situation: cr,s(g) has the weak coupling expansion

cr,s(g) = −
∞
∑

n=1

c(−n)
r,s g1+n.

We use the identities

ζ(1−z) = 2(2π)−z cos(1
2πz) Γ(z) ζ(z) and Γ(1−z) =

π

sin(πz) Γ(z)

to obtain

c(n)
r,s =

(

1 − (−1)r+s
)

cos(1
2πn) (−1)s−1−n ζ(1 − n)

Γ[12(5 − n − r − s)] Γ[12(3 − n + r − s)]
∗

∗ Γ(2 − n) Γ(1 − n) (r − 1)(s − 1)

Γ[12(3 − n − r + s)] Γ[12(1 − n + r + s)]
.

• Only even n contribute.

• Strong argument in BES, v2 contains a proof for c2,3.

General proof in KL ht/0611204.



9 String Phase and Scaling Function

The weak coupling expansion of the string theory dressing phase yields

the kernel

c
(−2)
2,3 = −4 ζ(3),

c
(−4)
2,3 = +40 ζ(5), c

(−4)
3,4 = −24 ζ(5), c

(−4)
2,5 = +8 ζ(5),

c
(−6)
2,3 = −420 ζ(7), c

(−6)
3,4 = +420 ζ(7), c

(−6)
2,5 = −168 ζ(7),

c
(−8)
2,3 = +4704 ζ(9), . . .

The scaling function becomes

f+(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(

73

630
π6 + 4 ζ(3)2

)

g8

+ 32

(

887

14175
π8 +

4

3
π2ζ(3)2 + 40 ζ(3) ζ(5)

)

g10

− 64

(

136883

3742200
π10 +

8

15
π4ζ(3)2 +

40

3
π2ζ(3) ζ(5)

+ 210 ζ(3) ζ(7) + 102 ζ(5)2

)

g12 + . . . .

f+(g) is obtained from f(g) (trivial dressing phase) by multiplying all

odd zeta functions by the imaginary unit i.



10 Agreement with Field Theory

In parallel to our effort, BCDKS have completed a direct computation

of the scaling function f(g) at four loops. Their calculation uses uni-

tarity methods and conformal invariance to predict a set of integrals

which are evaluated with the help of the MB representation. The

exponentiation of infrared singularities is a stringent check.

BCDKS find

f(g) = . . . − 64 × (29.335 ± 0.052) g8 + . . .

= . . . −
(

3.0192 ± 0.0054
)

× 10−6λ4 + . . . .

Recall our value:

f+(g) = . . . − 16

(

73

630
π6 + 4 ζ(3)2

)

g8 + . . .

≈ . . . − 3.01502 × 10−6λ4 + . . . .

The four-loop value calculated by Bern, Czakon, Dixon, Kosower and

Smirnov matches the fourth term in f+(g).

• BCDKS independently guessed the sign-flipped scaling function

f+(g). They checked compatibility with the KLV approximation

to rather high order.

• CSV ht/0612309 have improved the error bar of the BCDKS

result by three orders of magnitude.

• BMcLR constructed the four-loop Hamiltonian of the su(2) sector

from Feynman graphs. They confirm

β
(3)
2,3 = 4 ζ(3) .



11 Numerics by BBKS

f0(g) arises by omitting the odd zeta values.

f(g), f0(g), f+(g).

• The transition to the linear regime happens around g ≈ 1. Ex-

trapolation is well behaved.

Strong coupling behaviour of f+(g):

f+(g) = 4.000000 g − 0.661907 − 0.0232 g−1 + . . .

Error: ±{1, 2, 1} in the last digit displayed.

Exact result: GKP, FT, RT; BKK, KSV

f+(g) = 4 g − 3 log(2)

π
− K

4π2

1

g
+ . . .



12 Conclusions

• In the planar limit, the operator spectrum of N = 4 SYM is

described by an integrable system. We have presented a quick

review of the strategy for the so-called su(2) and sl(2) sectors

(BMN and twist operators, respectively). The approach has been

generalised to the full set of multiplets, and to higher loop orders.

• The weak coupling (gauge theory) Bethe ansatz is fixed up to

four loops by current data. It contains a dressing factor which

becomes relevant at four loops and beyond.

• The Bethe equations are valid in the asymptotic regime of infinite

spin chain length.

• Wrapping: For a discussion of strong coupling behaviour one

would need all orders in perturbation theory. In general, no such

result can be obtained for operators of finite length, since the in-

teraction range grows with the loop order.

• In string theory, there is an equivalent problem with finite size

corrections.

• We have discussed the all-loops Bethe ansatz for the derivative

operator sector. The energy of the lowest lying state scales log-

arithmically with the total spin s as the number of derivatives

becomes large. The coefficient of log(s) is the scaling function

f(g). The calculation is not affected by wrapping.

• At strong-coupling (string theory) the dressing phase had been

conjectured on grounds of calculational data paired with crossing

symmetry constraints. We have presented the weak coupling ex-

pansion of this string theory dressing phase and discussed its effect

on the scaling function.

• The four-loop term of the result f+(g) agrees with field theory

calculations!



13 Outlook

We must understand the wrapping regime/finite size corrections.

• N = 4 version of the BFKL equation KLRSV ht/07043586

• thermodynamic Bethe ansatz AF ht/07101568

• quantum corrections to the “giant magnon” GSV ht/08013671

• In field theory, the first case of wrapping is the fourth anoma-

lous dimension of the Konishi operator. Two calculations of the

appropriate modification of the four-loop spin chain Hamiltonian

have been presented, but they lead to results inconsistent with

each other and with the BFKL prediction FSSZ ht/07123522, KM

08011661.

• My initiative ht/07123513 involves a relatively small (O(100))

number of numerator terms with six derivatives for the following

two-point topologies:

The numerators of the six-loop diagrams have at least one p2.

I am currently reducing the four-loop part by IBP. (M36 running

now.) Higher diagrams perhaps first by MB?




