CP-violating loop effects in the Higgs sector of the MSSM

Georg Weiglein

IPPP Durham

Sondershausen, 04/2008

HEPTOOLS, collab. with A. Fowler, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, K. Williams

- Introduction
- Results for Higgs masses and wave function normalisations
- Higgs self-couplings and Higgs cascade decays
- Higgs production in SUSY cascade decays
- Conclusions

Introduction

MSSM Higgs potential contains two Higgs doublets:

$$V_{H} = m_{1}^{2} H_{1i}^{*} H_{1i} + m_{2}^{2} H_{2i}^{*} H_{2i} - \epsilon^{ij} (m_{12}^{2} H_{1i} H_{2j} + m_{12}^{2}^{*} H_{1i}^{*} H_{2j}^{*})$$

$$+ \frac{1}{8} (g_{1}^{2} + g_{2}^{2}) (H_{1i}^{*} H_{1i} - H_{2i}^{*} H_{2i})^{2} + \frac{1}{2} g_{2}^{2} |H_{1i}^{*} H_{2i}|^{2}$$

$$\begin{pmatrix} H_{11} \\ H_{12} \end{pmatrix} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix}$$

$$\begin{pmatrix} H_{21} \\ H_{22} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$

Complex phases $\arg(m_{12}^2)$, ξ can be rotated away

 \Rightarrow Higgs sector is \mathcal{CP} -conserving at tree level

Higher-order corrections in the MSSM Higgs sector

- Quartic couplings in the Higgs sector are given by the gauge couplings, g_1 , g_2 (SM: free parameter)
 - ⇒ Upper bound on the lightest Higgs mass
- Large higher-order corrections from Yukawa sector:
 - \Rightarrow Leading corr.: $\Delta m_{\rm h}^2 \sim G_\mu m_{\rm t}^4$
 - Can be of $\mathcal{O}(100\%)$
- ⇒ Higher-order corrections are phenomenologically very important (constraints on parameter space from search limits / possible future measurements)
 - Can induce CP-violating effects

CP violation in the Higgs sector

Five physical states; tree level: h^0, H^0, A^0, H^{\pm}

Complex parameters enter via (often large) loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-M_3$: gluino mass $m_{\tilde{\mathrm{g}}}$ + complex phase
- $\Rightarrow \mathcal{CP}$ -violating mixing between neutral Higgs bosons h_1 , h_2 , h_3

Lowest-order Higgs sector has two free parameters

 \Rightarrow choose $\tan \beta \equiv \frac{v_2}{v_1}$, $M_{\mathrm{H}^{\pm}}$ as input parameters

Phenomenological constraints on complex phases

Experimental constraints from:

- Electric dipole moments of electron, neutron, deuterium, heavy quarks, ...: affect mainly first two generations, corresponding phases are tightly constrained or mass scales have to be very heavy
- \mathcal{CP} -violation in the b sector: much weaker bounds on 3rd generation complex phases

CPX benchmark scen.: [M. Carena, J. Ellis, A. Pilaftsis, C. Wagner '00]

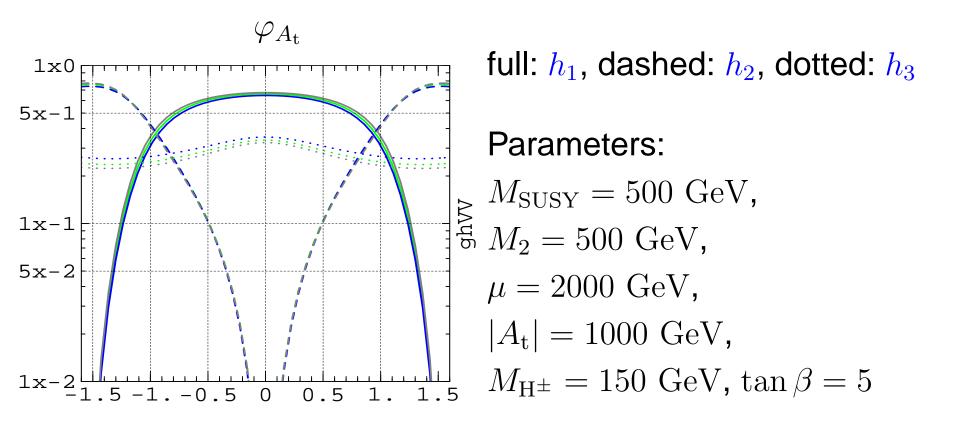
$$\varphi_{A_{t}} = \varphi_{A_{b}} = \varphi_{\tilde{g}} = 90^{\circ},$$

$$\mu = 4M_{SUSY}, \quad |A_{t}| = |A_{b}| = 2M_{SUSY}, \quad m_{\tilde{g}} = 1 \text{ TeV}$$

"extreme" parameter values, chosen to illustrate possible effects of complex phases

Impact of complex phases

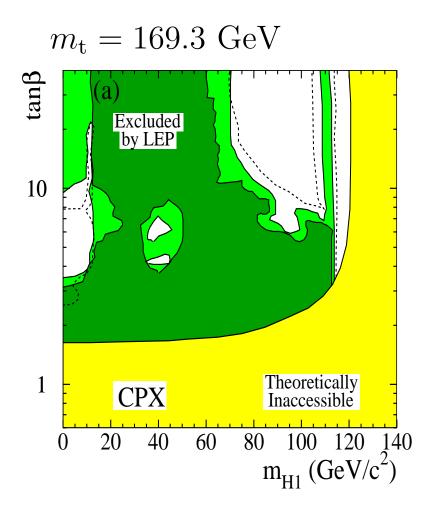
Example: g_{hVV}^2 for h_1, h_2, h_3 : [M. Frank, S. Heinemeyer, W. Hollik, G. W. '03]



⇒ Complex phases can have large effects on Higgs couplings

CP-violating case (CPX benchmark scenario): LEP exclusion bounds

[LEP Higgs Working Group '06]



 \Rightarrow No lower limit on $M_{\rm h_1}$: light SUSY Higgs not ruled out! Sensitive dependence on $m_{\rm t}$ CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, Loops & Legs 2008, Sondershausen, 04/2008 – p.7

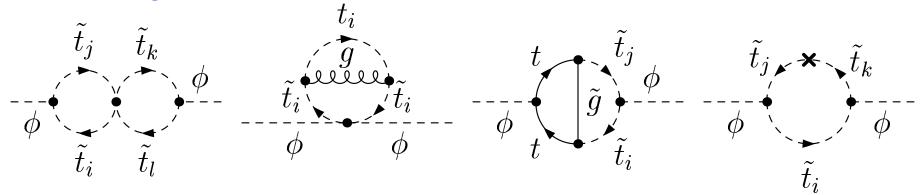
Reason for "CPX holes"

- Suppressed coupling of light Higgs, h₁, to gauge bosons over wide regions of parameter space
- Second-lightest Higgs, h_2 , may be within LEP reach (with reduced VVh_2 coupling), h_3 beyond LEP reach
- **●** Large BR($h_2 \rightarrow h_1 h_1$) \Rightarrow difficult final state
- \Rightarrow Precise prediction for $\mathrm{BR}(h_2 \to h_1 h_1)$ needed for analysis of Higgs exclusion bounds

Results for Higgs masses and wave function normalisations

Leading two-loop QCD corrections in the Higgs sector:

Gluon and gluino corrections to t, b, t, b contributions



Leading $\mathcal{O}(\alpha_t \alpha_s)$ corrections: 2-loop contrib. evaluated in limit of vanishing gauge couplings, external momentum: $p^2 \to 0$

Renormalisation:

- 2-loop renormalisation in the Higgs sector, independent parameters: $M_{\rm H^\pm}$, $\tan\beta$
- 1-loop renormalisation in the \tilde{t} , \tilde{b} sector, need also renormalisation of complex phase φ_{A_t}

Contributing counterterms from the two-loop renormalisation in the Higgs sector

[S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07]

 $s_x \equiv \sin(x), c_x \equiv \cos(x)$

$$\begin{split} \delta m_h^{2(2)} &= c_{\alpha-\beta}^2 \, \delta M_{\rm H^\pm}^{2(2)} + \frac{e \, s_{\alpha-\beta}}{4 M_{\rm Z} c_{\rm W} s_{\rm W}} \Big[\big(s_{\alpha-2\beta} - 3 s_{\alpha} \big) \delta T_{\phi_1}^{(2)} + \big(c_{\alpha-2\beta} + 3 c_{\alpha} \big) \delta T_{\phi_2}^{(2)} \Big] \,, \\ \delta m_{hH}^{2(2)} &= \frac{s_{2\alpha-2\beta}}{2} \, \delta M_{\rm H^\pm}^{2(2)} + \frac{e \, c_{\alpha-\beta}}{4 M_{\rm Z} c_{\rm W} s_{\rm W}} \Big[\big(s_{2\alpha-\beta} + c_{2\alpha-2\beta} s_{\beta} \big) \delta T_{\phi_1}^{(2)} - \frac{c_{2\alpha-3\beta} + 3 c_{2\alpha-\beta}}{2} \delta T_{\phi_2}^{(2)} \Big] \,, \\ \delta m_H^{2(2)} &= s_{\alpha-\beta}^2 \, \delta M_{\rm H^\pm}^{2(2)} + \frac{e \, c_{\alpha-\beta}}{4 M_{\rm Z} c_{\rm W} s_{\rm W}} \Big[\big(c_{\alpha-2\beta} - 3 c_{\alpha} \big) \delta T_{\phi_1}^{(2)} - \big(s_{\alpha-2\beta} + 3 s_{\alpha} \big) \delta T_{\phi_2}^{(2)} \Big] \,, \\ \delta m_{AH}^{2(2)} &= -\frac{e \, c_{\alpha-\beta}}{2 M_{\rm Z} c_{\rm W} s_{\rm W}} \delta T_A^{(2)} \,, \\ \delta m_{Ah}^{2(2)} &= \frac{e \, s_{\alpha-\beta}}{2 M_{\rm Z} c_{\rm W} s_{\rm W}} \delta T_A^{(2)} \,, \\ \delta m_A^{2(2)} &= \delta M_{\rm H^\pm}^{2(2)} \end{split}$$

Stop and sbottom mass matrices

$$\mathbf{M}_{\tilde{q}} = \begin{pmatrix} M_L^2 + m_q^2 + M_Z^2 c_{2\beta} (T_q^3 - Q_q s_{\mathrm{W}}^2) & m_q \mathbf{X}_q^* \\ m_q \mathbf{X}_q & M_{\tilde{q}_R}^2 + m_q^2 + M_Z^2 c_{2\beta} Q_q s_{\mathrm{W}}^2 \end{pmatrix}$$

with

$$X_q = A_q - \mu^* \kappa$$
, $\kappa = \{\cot \beta, \tan \beta\}$ for $q = t, b$

$$\mathbf{D}_{\tilde{q}} = \mathbf{U}_{\tilde{q}} \, \mathbf{M}_{\tilde{q}} \, \mathbf{U}_{\tilde{q}}^{\dagger} = \begin{pmatrix} m_{\tilde{q}_{1}}^{2} & 0 \\ 0 & m_{\tilde{q}_{2}}^{2} \end{pmatrix} \,, \qquad \mathbf{U}_{\tilde{q}} = \begin{pmatrix} \cos \theta_{\tilde{q}} & e^{i\boldsymbol{\varphi}_{\tilde{q}}} \sin \theta_{\tilde{q}} \\ -e^{-i\boldsymbol{\varphi}_{\tilde{q}}} \sin \theta_{\tilde{q}} & \cos \theta_{\tilde{q}} \end{pmatrix}$$

 \Rightarrow Mass eigenvalues $m_{\tilde{q}_1}^2$, $m_{\tilde{q}_2}^2$, mixing angle $\theta_{\tilde{q}}$, phase $\varphi_{\tilde{q}}$

Mass eigenvalues $m_{\tilde{q}_1}^2$, $m_{\tilde{q}_2}^2$ depend only on $|X_q|$

Renormalisation in the sfermion sector with complex parameters

$$\begin{split} \delta |A_{\mathbf{t}}| &= \frac{1}{m_{\mathbf{t}}} \mathrm{Re}[e^{i\varphi_{A_{\mathbf{t}}}} K_{t}] \;, \quad \delta \varphi_{A_{\mathbf{t}}} = -\frac{1}{m_{\mathbf{t}}|A_{\mathbf{t}}|} \mathrm{Im}[e^{i\varphi_{A_{\mathbf{t}}}} K_{t}] \\ K_{t} &= -\left(A_{\mathbf{t}}^{*} - \mu \cot \beta\right) \delta m_{\mathbf{t}} + U_{\tilde{\mathbf{t}}_{11}}^{*} U_{\tilde{\mathbf{t}}_{12}} (\delta m_{\tilde{\mathbf{t}}_{1}}^{2} - \delta m_{\tilde{\mathbf{t}}_{2}}^{2}) \\ &+ U_{\tilde{\mathbf{t}}_{11}}^{*} U_{\tilde{\mathbf{t}}_{22}} \delta Y_{t} + U_{\tilde{\mathbf{t}}_{12}} U_{\tilde{\mathbf{t}}_{21}}^{*} \delta Y_{t}^{*} \end{split}$$
$$\delta Y_{\tilde{\mathbf{t}}} &= \frac{1}{2} \left[\widetilde{\mathrm{Re}} \Sigma_{\tilde{\mathbf{t}}_{12}} (m_{\tilde{\mathbf{t}}_{1}}^{2}) + \widetilde{\mathrm{Re}} \Sigma_{\tilde{\mathbf{t}}_{12}} (m_{\tilde{\mathbf{t}}_{2}}^{2}) \right] \end{split}$$

SU(2) invariance \Rightarrow relation between $m_{\tilde{b}_L}$, $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$

$$\delta m_{\tilde{b}_L}^2 = |U_{\tilde{t}_{11}}|^2 \delta m_{\tilde{t}_1}^2 + |U_{\tilde{t}_{12}}|^2 \delta m_{\tilde{t}_2}^2 - U_{\tilde{t}_{12}}^* U_{\tilde{t}_{22}} \delta Y_t - U_{\tilde{t}_{12}} U_{\tilde{t}_{22}}^* \delta Y_t^* - 2m_t \delta m_t$$

Results for Higgs self-energies are implemented in FeynHiggs

[T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '08]

Higher-order corrections to the Higgs masses

Mixing between h, H, A

→ loop-corrected masses obtained from propagator matrix

$$\Delta_{hHA}(p^2) = -\left(\hat{\Gamma}_{hHA}(p^2)\right)^{-1}, \quad \hat{\Gamma}_{hHA}(p^2) = i\left[p^2\mathbb{1} - M_n(p^2)\right]$$

where (up to sub-leading two-loop corrections)

$$M_{n}(p^{2}) = \begin{pmatrix} m_{h}^{2} - \hat{\Sigma}_{hh}(p^{2}) & -\hat{\Sigma}_{hH}(p^{2}) & -\hat{\Sigma}_{hA}(p^{2}) \\ -\hat{\Sigma}_{hH}(p^{2}) & m_{H}^{2} - \hat{\Sigma}_{HH}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) \\ -\hat{\Sigma}_{hA}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) & m_{A}^{2} - \hat{\Sigma}_{AA}(p^{2}) \end{pmatrix}$$

$$\Rightarrow$$
 Higgs propagators: $\Delta_{ii}(p^2) = \frac{\imath}{p^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(p^2)}$

Higher-order corrections to the Higgs masses

$$\hat{\Sigma}_{ii}^{\text{eff}}(p^2) = \hat{\Sigma}_{ii}(p^2) - i \frac{2\hat{\Gamma}_{ij}(p^2)\hat{\Gamma}_{jk}(p^2)\hat{\Gamma}_{ki}(p^2) - \hat{\Gamma}_{ki}^2(p^2)\hat{\Gamma}_{jj}(p^2) - \hat{\Gamma}_{ij}^2(p^2)\hat{\Gamma}_{kk}(p^2)}{\hat{\Gamma}_{jj}(p^2)\hat{\Gamma}_{kk}(p^2) - \hat{\Gamma}_{jk}^2(p^2)}$$

Complex pole \mathcal{M}^2 of each propagator is determined from

$$\mathcal{M}_i^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(\mathcal{M}_i^2) = 0,$$

where

$$\mathcal{M}^2 = M^2 - iM\Gamma,$$

Expansion around the real part of the complex pole:

$$\hat{\Sigma}_{jk}(\mathcal{M}_{h_a}^2) \approx \hat{\Sigma}_{jk}(M_{h_a}^2) + i \operatorname{Im} \left[\mathcal{M}_{h_a}^2 \right] \hat{\Sigma}'_{jk}(M_{h_a}^2)$$

$$j, k = h, H, A, a = 1, 2, 3$$

Impact of complex phases at the two-loop level

 $\mathcal{O}(\alpha_{\rm t}\alpha_s)$ corrections depend only on the phase combinations

$$\mu A_{
m t} \, \left(m_{12}^2
ight)^* \quad {
m and} \quad A_{
m t} \, M_3^*$$

Phase of m_{12}^2 has been rotated away (see above)

 \Rightarrow Analyse the dependence on the phases of $A_{\rm t}$ ($X_{\rm t}$) and M_3

Variation of φ_{A_t} for fixed μ , $\tan \beta$

 \Rightarrow change of $|X_{\rm t}| \Rightarrow$ change of stop masses

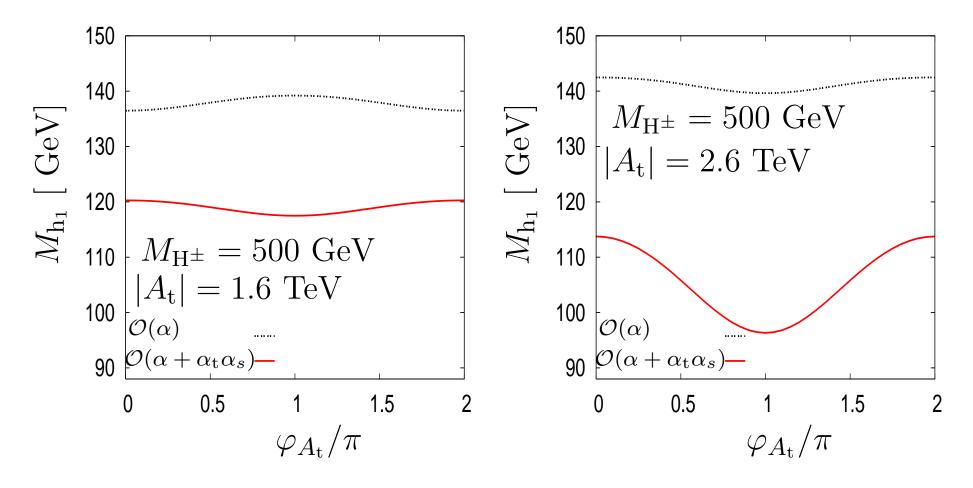
Variation of $\varphi_{X_{\mathrm{t}}}$

 \Rightarrow change of $A_{\rm t}$, stop masses stay the same

Dependence of prediction for $M_{ m h_1}$ on $\varphi_{A_{ m t}}$: one-loop vs. two-loop

[S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07]

 $\mu = 1 \text{ TeV}$, $\tan \beta = 10$

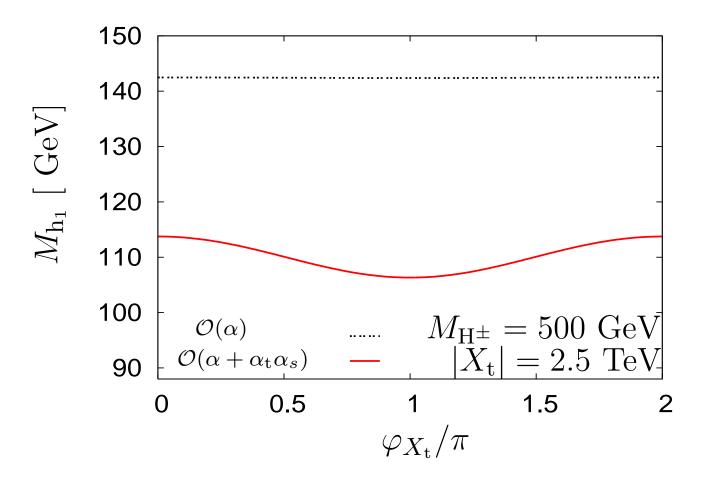


 \Rightarrow Two-loop corrections significantly enhance the effects of the complex phase $\varphi_{A_{\rm t}}$, sizable effects for large $|A_{\rm t}|$

Dependence of prediction for $M_{\rm h_1}$ on φ_{X_*} : one-loop vs. two-loop

[S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07] $\mu=1~{
m TeV}$, aneta=10

$$\mu = 1 \text{ TeV}$$
, $\tan \beta = 10$



 \Rightarrow One-loop: very weak dependence on φ_{X_*}

Two-loop: large change in phase dependence

Reason for the large impact of the phase in the two-loop contribution

Leading one-loop result in the limit $M_{\rm H^\pm}\gg M_{\rm Z}$ depends only on the absolute value $|X_{\rm t}|\equiv |A_{\rm t}-\mu^*/\tan\beta|$

- \Leftrightarrow only combination $\varphi_{A_{\rm t}} + \varphi_{\mu}$ enters
- \Rightarrow weak dependence of one-loop result on $\varphi_{X_{\mathbf{t}}}$ dependence on $\varphi_{A_{\mathbf{t}}}$ mainly through $|X_{\mathbf{t}}|$

Reason for the large impact of the phase in the two-loop contribution

Leading one-loop result in the limit $M_{\rm H^\pm}\gg M_{\rm Z}$ depends only on the absolute value $|X_{\rm t}|\equiv |A_{\rm t}-\mu^*/\tan\beta|$

- \Leftrightarrow only combination $\varphi_{A_{\rm t}} + \varphi_{\mu}$ enters
- \Rightarrow weak dependence of one-loop result on $\varphi_{X_{\mathrm{t}}}$ dependence on $\varphi_{A_{\mathrm{t}}}$ mainly through $|X_{\mathrm{t}}|$

Two-loop level:

- \Rightarrow Gluino contributions introduce dependence on phase combination $A_{\rm t}\,M_3^*$
- ⇒ Large modification of phase dependence

Higgs mixing

- Need to establish the correct on-shell properties of processes with external Higgs bosons
 - \Rightarrow finite wave function normalisation factors Z_i introduced
- Unstable particles ⇒ finite-width effects important
- h₂, h₃ are almost mass-degenerate over a large part of the parameter space

$$M_{h_3}-M_{h_2}\sim\Gamma_{h_2},\Gamma_{h_3}$$

→ resonance-type effects possible

Wave function normalisation (finite) for amplitudes with external Higgs bosons

$$Z_{h} = \frac{1}{\frac{\partial}{\partial p^{2}} \left(\frac{i}{\Delta_{hh}(p^{2})}\right)\Big|_{p^{2} = \mathcal{M}_{ha}^{2}}}$$

$$Z_{A} = \frac{1}{\frac{\partial}{\partial p^{2}} \left(\frac{i}{\Delta_{AA}(p^{2})}\right)\Big|_{p^{2} = \mathcal{M}_{h}^{2}}}$$

$$Z_{H} = \frac{1}{\left. \frac{\partial}{\partial p^{2}} \left(\frac{i}{\Delta_{HH}(p^{2})} \right) \right|_{p^{2} = \mathcal{M}_{h_{b}}^{2}}}$$

$$Z_{hH} = \left. \frac{\Delta_{hH}}{\Delta_{hh}} \right|_{p^2 = \mathcal{M}_{h_a}^2}$$

$$Z_{Hh} = \frac{\Delta_{hH}}{\Delta_{HH}} \bigg|_{p^2 = \mathcal{M}_{h_b}^2} Z_{Ah} = \frac{\Delta_{hA}}{\Delta_{AA}} \bigg|_{p^2 = \mathcal{M}_{h_c}^2}$$

$$Z_{hA} = \left. \frac{\Delta_{hA}}{\Delta_{hh}} \right|_{p^2 = \mathcal{M}_{ha}^2}$$

$$Z_{HA} = \frac{\Delta_{HA}}{\Delta_{HH}} \bigg|_{p^2 = \mathcal{M}_{h_b}^2} Z_{AH} = \frac{\Delta_{HA}}{\Delta_{AA}} \bigg|_{p^2 = \mathcal{M}_{h_c}^2}$$

Wave function normalisation for amplitudes with external Higgs bosons

WF constants can be written as (non-unitary) matrix 2,

$$\hat{\mathbf{Z}} = \begin{pmatrix} \sqrt{Z_h} & \sqrt{Z_h} Z_{hH} & \sqrt{Z_h} Z_{hA} \\ \sqrt{Z_H} Z_{Hh} & \sqrt{Z_H} & \sqrt{Z_H} Z_{HA} \\ \sqrt{Z_A} Z_{Ah} & \sqrt{Z_A} Z_{AH} & \sqrt{Z_A} \end{pmatrix}, \quad \begin{pmatrix} \hat{\Gamma}_{h_a} \\ \hat{\Gamma}_{h_b} \\ \hat{\Gamma}_{h_c} \end{pmatrix} = \hat{\mathbf{Z}} \cdot \begin{pmatrix} \hat{\Gamma}_h \\ \hat{\Gamma}_H \\ \hat{\Gamma}_A \end{pmatrix}$$

Fulfills the conditions

$$\lim_{p^2 \to \mathcal{M}_{h_a}^2} -\frac{i}{p^2 - \mathcal{M}_{h_a}^2} \left(\hat{\mathbf{Z}} \cdot \hat{\mathbf{\Gamma}}_2 \cdot \hat{\mathbf{Z}}^T \right)_{hh} = 1$$

$$\lim_{p^2 \to \mathcal{M}_{h_b}^2} -\frac{i}{p^2 - \mathcal{M}_{h_b}^2} \left(\hat{\mathbf{Z}} \cdot \hat{\mathbf{\Gamma}}_2 \cdot \hat{\mathbf{Z}}^T \right)_{HH} = 1$$

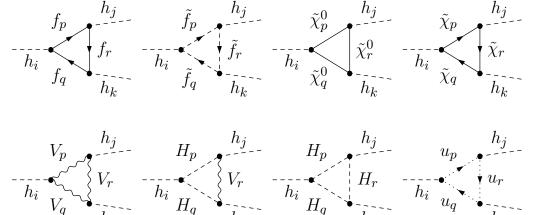
$$\lim_{p^2 \to \mathcal{M}_{h_b}^2} -\frac{i}{p^2 - \mathcal{M}_{h_c}^2} \left(\hat{\mathbf{Z}} \cdot \hat{\mathbf{\Gamma}}_2 \cdot \hat{\mathbf{Z}}^T \right)_{AA} = 1$$

Higgs cascade decays: $h_2 \rightarrow h_1 h_1$, . . .

Higgs cascade decays:

• Important for Higgs searches: $h_2 \rightarrow h_1 h_1$ is in general the dominant channel where it is kinematically allowed

 Access to Higgs self-coupling ⇒ reconstruction of the Higgs potential



Complete one-loop results in the MSSM with complex parameters + two-loop propagator-type corrections

[K. Williams, G. W. '07]

Higgs – Goldstone mixing

Calculations in the MSSM Higgs sector are notorious for mixing different orders of perturbation theory ⇒ need to be careful not to spoil symmetry relations, gauge cancellations

Particular care needed for treatment of mixing of Higgs bosons with Goldstone bosons

⇒ Treat Higgs – Goldstone mixing strictly at one-loop level to ensure the cancellation of unphysical poles

$$\Gamma_{h_a h_b h_c}^{\text{full}} = \mathbf{\hat{Z}}_{ck} \mathbf{\hat{Z}}_{bj} \mathbf{\hat{Z}}_{ai} \left[\Gamma_{h_i h_j h_k}^{\text{1PI}} \left(M_{h_a}^2, M_{h_b}^2, M_{h_c}^2 \right) + \underbrace{\Gamma_{h_i h_j h_k}^{\text{G,Z mix}} \left(m_{h_i}^2, m_{h_j}^2, m_{h_k}^2 \right)} \right]$$

tree-level masses, tree-level vertex, one-loop Higgs-Goldstone self-energy

Numerical effect of Higgs – Goldstone mixing is small

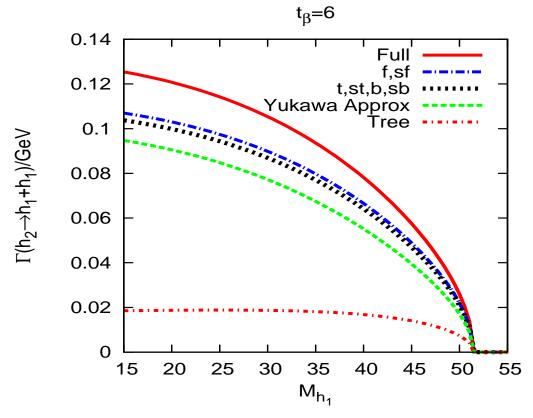
Impact of higher-order corrections on prediction

for
$$\Gamma(h_2 \to h_1 h_1)$$

Complete 1-loop result for $(h_2h_1h_1)$ vertex contribution in the MSSM with complex parameters [K. Williams, G. W. '07]

+ 2-loop propagator corrections; CPX benchmark scenario

[S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07]



 \Rightarrow Huge effect from corrections to genuine $(h_2h_1h_1)$ vertex

Impact on exclusion bounds from the LEP Higgs searches

Comparison of improved theory predictions with bounds on topological cross sections from LEP: [LEP Higgs Working Group '06]

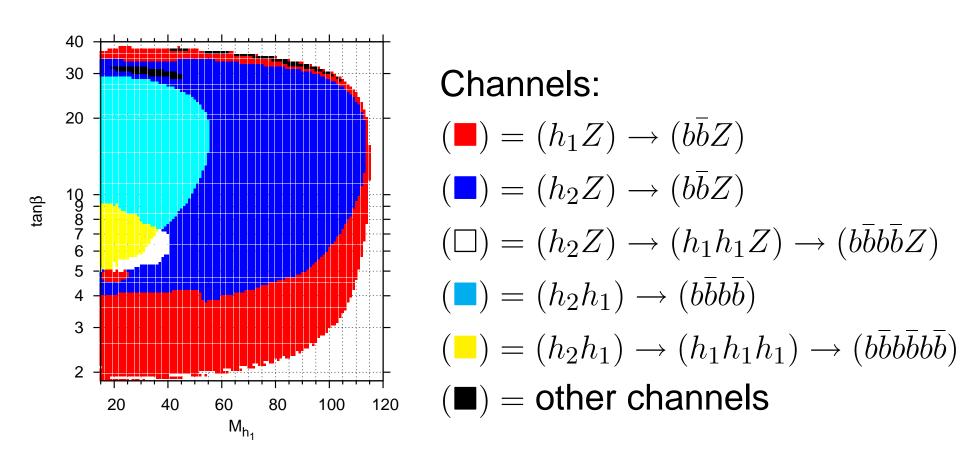
In order to obtain a correct statistical interpretation of overall exclusion limit at 95% C.L.:

Need to compare theory prediction with the single channel that has the highest statistical sensitivity for setting an exclusion limit

LEP Higgs search channels that are predicted to have the highest statistical sensitivity for setting an exclusion limit

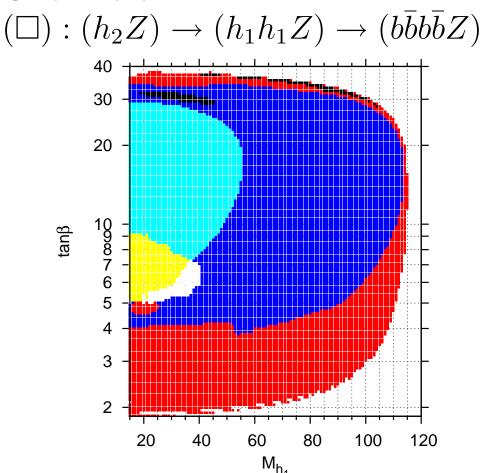
HiggsBounds [P. Bechtle, O. Brein, S. Heinemeyer, G. W., K. Williams '08]

Contains LEP limits; implementation of Tevatron limits in progress



Impact on exclusion bounds from the LEP Higgs searches, CPX scenario, $m_{\rm t}=170.9~{ m GeV}$

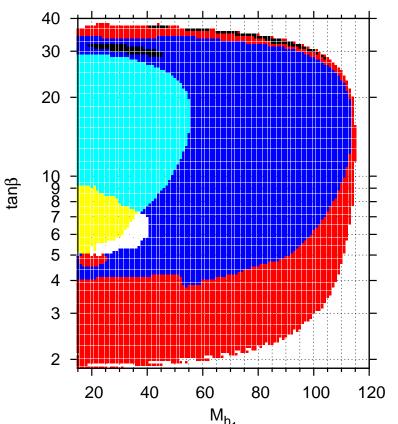
Channels



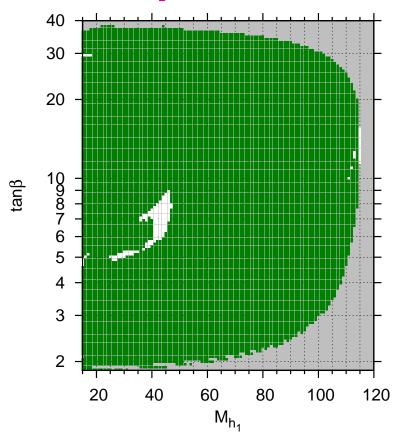
Impact on exclusion bounds from the LEP Higgs searches, CPX scenario, $m_{\rm t}=170.9~{\rm GeV}$

Channels

$\Box):(h_2Z) o (h_1h_1Z) o (bbbZ)$ 95% C.L. [K. Williams, G. W. '07]



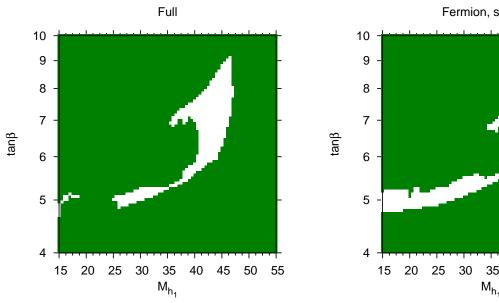
Excluded region from LEP,

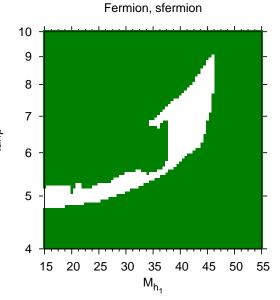


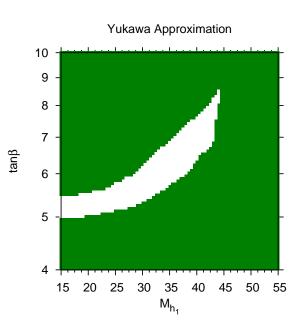
 \Rightarrow "Hole" in the LEP coverage where $h_2 \rightarrow h_1 h_1$ is dominating very light Higgs boson is not excluded

LEP coverage: comparison of complete result for genuine triple-Higgs vertex corrections with approximations

Complete result, fermion / sfermion contribution, Yukawa approximation



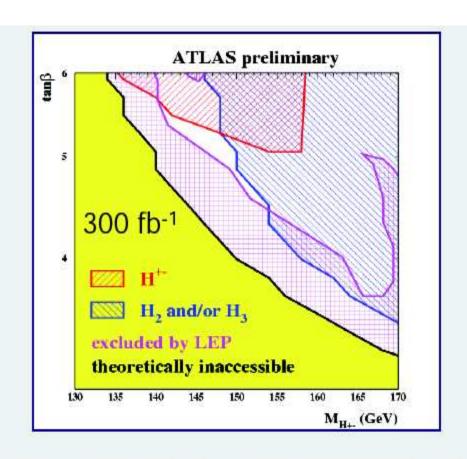


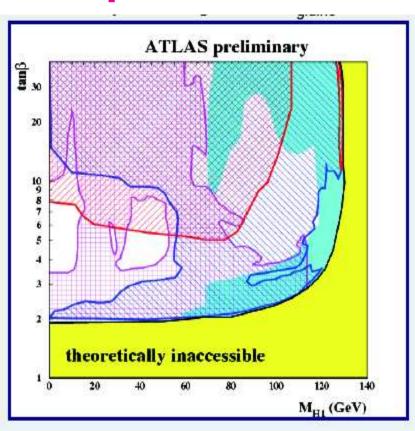


⇒ Sub-leading contributions have sizable impact

CPX holes are also difficult to cover at the LHC

[M. Schumacher, ATLAS '07]





 M_{H1} : < 50 GeV, M_{H2} : 105 to 115 GeV, M_{H3} : 140 to 180 GeV, M_{H+-} : 130 to 170 GeV

Markus Schumacher

Prospect for Higgs Boson Physics at LHC

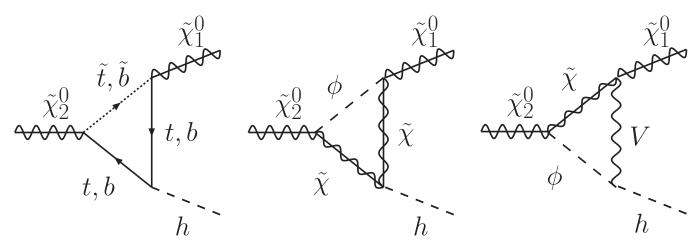
Euro-GDR SUSY07, Brussels

Higgs production in SUSY cascade decays

CPX holes ⇔ very light Higgs

- → Can be produced in SUSY cascade decays
- $\Rightarrow \tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h$ can dominate over $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 l \bar{l}$

Genuine one-loop corrections in the MSSM with complex phases



+ two-loop $\mathcal{O}(\alpha_t \alpha_s)$ propagator-type corrections

[A. Fowler, G. W., preliminary, '08]

Higher-order contributions to $\Gamma(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h)$

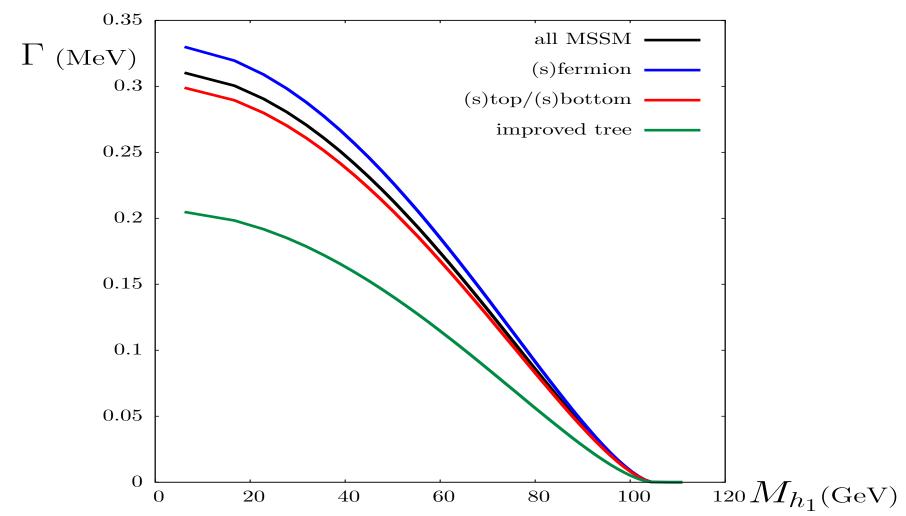
Chargino/neutralino ren. [*T. Fritzsche, W. Hollik '02*] [*H. Eberl et al. 02*] Six particle masses: $m_{\tilde{\chi}_1^\pm}$ $m_{\tilde{\chi}_2^\pm}$, $m_{\tilde{\chi}_1^0}$ $m_{\tilde{\chi}_2^0}$, $m_{\tilde{\chi}_3^0}$ $m_{\tilde{\chi}_4^0}$

Three parameters: M_1 , M_2 , μ (ren. for phases in progress)

- On-shell prescription: choose three particle masses as on-shell, other mass CTs are dependent quantities Convenient for processes with external charginos and neutralinos
 - but: asymmetric treatment: pole masses for three of the masses receive higher-order corrections determination of finite parts of the dependent counterterms can lead to unphysically large effects
- DR prescription: simple and symmetric, but: all pole masses receive higher-order corrections potential problems with external SUSY particles

Higher-order contributions to $\Gamma(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h)$

Results in the CPX scenario [A. Fowler, G. W., preliminary, '08]



⇒ Large effect from genuine vertex corrections

Conclusions

Results in the MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings,

$$\Gamma(h_2 \to h_1 h_1)$$
, $\Gamma(h_i \to f \bar{f})$, $\Gamma(\tilde{\chi}_i^0 \to \tilde{\chi}_j^0 h_k)$

+ two-loop $\mathcal{O}(\alpha_t \alpha_s)$ propagator-type corrections Implementation into *FeynHiggs* is in progress

Conclusions

Results in the MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings,

$$\Gamma(h_2 \to h_1 h_1)$$
, $\Gamma(h_i \to f \overline{f})$, $\Gamma(\tilde{\chi}_i^0 \to \tilde{\chi}_j^0 h_k)$

- + two-loop $\mathcal{O}(\alpha_t \alpha_s)$ propagator-type corrections Implementation into *FeynHiggs* is in progress
- Complex phases can have large impact on Higgs pheno:
 - 2-loop contrib. yield large enhancement of phase dep.
 - large effect on $BR(h_2 \rightarrow h_1 h_1)$
 - Confirmation of "CPX holes": very light Higgs boson is not excluded

Conclusions

Results in the MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings,

$$\Gamma(h_2 \to h_1 h_1)$$
, $\Gamma(h_i \to f \overline{f})$, $\Gamma(\tilde{\chi}_i^0 \to \tilde{\chi}_j^0 h_k)$

- + two-loop $\mathcal{O}(\alpha_t \alpha_s)$ propagator-type corrections Implementation into *FeynHiggs* is in progress
- Complex phases can have large impact on Higgs pheno:
 - 2-loop contrib. yield large enhancement of phase dep.
 - large effect on $BR(h_2 \rightarrow h_1 h_1)$
 - Confirmation of "CPX holes": very light Higgs boson is not excluded
- "CPX holes" could potentially be covered at the LHC with SUSY cascade decays
 - Genuine $(\tilde{\chi}_i^0 \tilde{\chi}_i^0 h_k)$ vertex corrections are large