# **Evaluating the three-loop quark**

# static potential

V.A. Smirnov

Nuclear Physics Institute of Moscow State University

and

Institut für Theoretische Teilchenphysik, Universität Karlsruhe

in collaboration with A.V. Smirnov and M. Steinhauser

- Introduction. Our calculational scheme.
- Seduction to master integrals by FIRE (an algorithm to solve reduction problems for Feynman integrals).
- Evaluating master integrals by Mellin–Barnes representation.
- Preliminary results and perspectives.

The QCD potential between a heavy static quark and its antiquark in an expansion in  $\alpha_s$  and heavy-quark velocity  $v \sim \alpha_s$ .

Two alternative definitions of the potential: in terms of a Wilson loop, in the framework of an effective field theory.

The dynamics of a nonrelativistic quark-antiquark pair involves three well separated scales: hard  $\sim m_q$ ; soft  $\sim m_q v$ ; ultrasoft  $\sim m_q v^2$  Expansion by regions Four regions are relevant:

[M. Beneke & V.A. Smirnov '98]

hard (energy and momentum  $\sim m_q$ ); soft (energy and momentum  $\sim m_q v$ ); potential (energy  $\sim m_q v^2$ , momentum  $\sim m_q v$ ); ultrasoft (energy and momentum  $\sim m_q v^2$ )

'Integrating out' the hard modes: QCD  $\rightarrow$  NRQCD 'Integrating out' the soft modes and potential gluons: NRQCD  $\rightarrow$  pNRQCD.

The static potential as an operator in pNRQCD Lagrangian.

The static colour-singlet potential

$$V(|\boldsymbol{q}|) = -\frac{4\pi C_F \alpha_s(|\boldsymbol{q}|)}{\boldsymbol{q}^2} \left[ 1 + \frac{\alpha_s(|\boldsymbol{q}|)}{4\pi} a_1 + \left(\frac{\alpha_s(|\boldsymbol{q}|)}{4\pi}\right)^2 a_2 + \left(\frac{\alpha_s(|\boldsymbol{q}|)}{4\pi}\right)^3 \left(a_3 + 8\pi^2 C_A^3 \ln \frac{\mu^2}{\boldsymbol{q}^2}\right) + \cdots \right]$$

with  $C_A = N$  and  $C_F = (N^2 - 1)/(2N)$  are the eigenvalues of the quadratic Casimir operators of the adjoint and fundamental representations of the SU(N) colour gauge group, respectively,  $T_F = 1/2$  is the index of the fundamental representation, and  $n_l$  is the number of light-quark flavours.

#### One loop

[W. Fischler '77; A. Billoire '80]

$$a_1 = \frac{31}{9}C_A - \frac{20}{9}T_F n_l$$

Two loops

[M. Peter'97; Y. Schröder'99]

$$a_{2} = \left[\frac{4343}{162} + 4\pi^{2} - \frac{\pi^{4}}{4} + \frac{22}{3}\zeta(3)\right]C_{A}^{2} - \left[\frac{1798}{81} + \frac{56}{3}\zeta(3)\right]C_{A}T_{F}n_{l}$$
$$- \left[\frac{55}{3} - 16\zeta(3)\right]C_{F}T_{F}n_{l} + \left(\frac{20}{9}T_{F}n_{l}\right)^{2}$$

1/ $m_q$ -correction [B.A. Kniehl, A.A. Penin, V.A. Smirnov, and M. Steinhauser'02] Three loops:  $a_3 = a_3^{(3)}n_l^3 + a_3^{(2)}n_l^2 + a_3^{(1)}n_l + a_3^{(0)} =?$  $a_3$  is one of a few missing NNNLO ingredients of the non-relativistic dynamics near threshold.







$$F(a_1, a_2, a_3) = \int \frac{\mathsf{d}^d k}{(-k^2 - i0)^{a_1} (-(q - k)^2 - i0)^{a_2} (-v \cdot k - i0)^{a_3}}$$
  
with  $q \cdot v = 0$ ,  $v = (1, \vec{0})$ 

# Two loops:



## Generation of diagrams by QGRAPH

Typical diagrams in three loops:



 $C_F(n_lT_F)^3 C_F C_A(n_lT_F)^2 C_F^2(n_lT_F)^2 C_F C_A^2 n_lT_F C_F^2 C_A n_lT_F C_F^3 n_lT_F$ 



 $J_{11}^{a}(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{7}, n_{8}; n_{0}; n_{9}, n_{10}, n_{11}, n_{13}, n_{15}, n_{16}; s_{9}, s_{10}, s_{11}, s_{13}, s_{15}, s_{16})$ 

$$= \int \int \int \frac{(-p_0^2)^{-n_0} dk \, dl \, dr}{(-p_1^2)^{n_1} (-p_2^2)^{n_2} (-p_3^2)^{n_3} (-p_4^2)^{n_4} (-p_5^2)^{n_5} (-p_6^2)^{n_6} (-p_7^2)^{n_7} (-p_8^2)^{n_8}} \times \frac{1}{(-v \cdot p_1 - s_9 i0)^{n_9} (-v \cdot p_2 - s_{10} i0)^{n_{10}} (-v \cdot p_3 - s_{11} i0)^{n_{11}} (-v \cdot p_5 - s_{13} i0)^{n_{13}} (-v \cdot p_7 - s_{15} i0)^{n_{15}} (-v \cdot p_8 - s_{16} i0)^{n_{16}}}}{p_0 = k - r, p_1 = k, p_2 = l, p_3 = r, p_4 = q + r, p_5 = q + k - l + r, p_6 = q + k, p_7 = l - r, p_8 = k - l}$$

 $J_{11}^{b}(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{7}, n_{8}; n_{0}; n_{9}, n_{10}, n_{12}, n_{14}, n_{15}, n_{16}; s_{9}, s_{10}, s_{12}, s_{14}, s_{15}, s_{16})$ 

$$= \int \int \int \frac{(-p_0^2)^{-n_0} dk \, dl \, dr}{(-p_1^2)^{n_1} (-p_2^2)^{n_2} (-p_3^2)^{n_3} (-p_4^2)^{n_4} (-p_5^2)^{n_5} (-p_6^2)^{n_6} (-p_7^2)^{n_7} (-p_8^2)^{n_8}} \\ \times \frac{1}{(-v \cdot p_1 - s_9 i 0)^{n_9} (-v \cdot p_2 - s_{10} i 0)^{n_{10}} (-v \cdot p_4 - s_{12} i 0)^{n_{12}} (-v \cdot p_6 - s_{14} i 0)^{n_{14}} (-v \cdot p_7 - s_{15} i 0)^{n_{15}} (-v \cdot p_8 - s_{16} i 0)^{n_{16}}} \\ p_0 = l - q, p_1 = k - q, p_2 = r - q, p_3 = r, p_4 = l, p_5 = k, p_6 = k - r, p_7 = l - r, p_8 = k - l \\ J_{11}^c (n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8; n_0; n_9, n_{10}, n_{11}, n_{15}, n_{16}; s_9, s_{10}, s_{11}, s_{15}, s_{16}) \\ = \int \int \int \frac{(-p_0^2)^{-n_0} dk \, dl \, dr}{(-p_1^2)^{n_1} (-p_2^2)^{n_2} (-p_3^2)^{n_3} (-p_4^2)^{n_4} (-p_5^2)^{n_5} (-p_6^2)^{n_6} (-p_7^2)^{n_7} (-p_8^2)^{n_8}} \\ \times \frac{1}{(-v \cdot p_1 - s_9 i 0)^{n_9} (-v \cdot p_2 - s_{10} i 0)^{n_{10}} (-v \cdot p_3 - s_{11} i 0)^{n_{11}} (-v \cdot p_7 - s_{15} i 0)^{n_{15}} (-v \cdot p_8 - s_{16} i 0)^{n_{16}}} \\ p_0 = k - r, p_1 = k, p_2 = l, p_3 = r, p_4 = q + r, p_5 = q + l, p_6 = q + k, p_7 = k - l, p_8 = l - r \end{cases}$$

Here  $s_i = 1$  or -1. The casual -i0 is omitted in all the propagators with quadratic momentum dependence, i.e. we have  $-p_1^2 - i0$ , etc.

## Various classes of Feynman integrals with 12 indices:

.





And 15 types of two-loop Feynman integrals with 7 indices, where one index can be shifted:  $a_i \rightarrow a_i + \epsilon$  or  $a_i \rightarrow a_i + 2\epsilon$ 

# For $n_l^1$ contribution: ~ 70000 integrals of different types in the general $\xi$ -gauge

For example,



with the numerator chosen as  $(-(k-r)^2)^{-a_{12}}$ 

### IBP [K.G. Chetyrkin & F.V. Tkachov'81]

The whole problem of the evaluation of a given family of Feynman integrals  $\rightarrow$ 

- constructing a reduction procedure using IBP
- evaluating master integrals

Solving reduction problems algorithmically:

'Laporta's algorithm'

[S. Laporta and E. Remiddi'96; S. Laporta'00; T. Gehrmann and E. Remiddi'01] One public version AIR [C. Anastasiou and A. Lazopoulos'04] Private versions

[T. Gehrmann and E. Remiddi, M. Czakon, Y. Schröder, C. Sturm, P. Marquard and D. Seidel, ...]

- Baikov's method
- Gröbner bases. Suggested by O.V. Tarasov [O.V. Tarasov'98]

### An alternative approach:

[A.V. Smirnov & V.A. Smirnov'05–07;

A.G. Grozin, A.V. Smirnov and V.A. Smirnov'06

A.V. Smirnov, V.A. Smirnov, and M. Steinhauser'08]

FIRE = Feynman Integrals REduction [A.V. Smirnov]
(implemented in Mathematica)

Sectors  $2^n$  regions labelled by subsets  $\nu \subseteq \{1, \ldots, n\}$ :  $\sigma_{\nu} = \{(a_1, \ldots, a_n) : a_i > 0 \text{ if } i \in \nu, a_i \leq 0 \text{ if } i \notin \nu\}$ Natural ordering.

The goal of reduction: to make more non-positive indices.

Three different strategies in FIRE.

1. In sectors with a small number of non-positive indices, apply *s*-bases (generalizations of Gröbner bases). Constructing them automatically by a kind of Buchberger algorithm.

2. In sectors with a large number of non-positive indices, integrate over a loop momentum explicitly and reduce the problem to a family of two-loop integrals where the index of one propagator is, possibly, shifted by  $\epsilon$  or  $2\epsilon$ .

Consider the region  $a_2, a_5, a_{10} \le 0$ ,  $a_7, a_8 > 0$ 



Apply *s*-bases (within FIRE) to such 2loop reduction problems with 7 indices.

Reduce indices  $a_2, a_5, a_{10}, a_7, a_8$  to their boundary values, i.e.  $a_2, a_5, a_{10} = 0, a_7, a_8 = 1$ 



At these values, the transition to the 2loop problem because very simple (without multiple summations).

**3.** In 'intermediate sectors', the Laporta's algorithm (implemented within FIRE) is applied.

Evaluating master integrals by MB

[V.A. Smirnov'99, J.B Tausk'99]

We could not use AMBRE and used MB.m

[J. Gluza, K. Kajda & T. Riemann'07] [M. Czakon'05]

 $\sim 100$  master integrals in the whole problem

### For example,







Transcendentality level 5 (and, sometimes, 6) is needed. The constants of level 5 that we encounter:

 $\zeta(5), \ \zeta(4) \ln 2, \ \zeta(2)\zeta(3), \ \zeta(3) \ln^2 2, \ \zeta(2) \ln^3 2, \ \ln^5 2, \ \mathsf{Li}_5\left(\frac{1}{2}\right), \ \mathsf{Li}_4\left(\frac{1}{2}\right) \ln 2$ 

$$a_3 = a_3^{(3)} n_l^3 + a_3^{(2)} n_l^2 + a_3^{(1)} n_l + a_3^{(0)}$$

$$a_3^{(3)} = -\left(\frac{20}{9}\right)^3 T_F^3,$$
  

$$a_3^{(2)} = \left(\frac{12541}{243} + \frac{368\zeta(3)}{3} + \frac{64\pi^4}{135}\right) C_A T_F^2$$
  

$$+ \left(\frac{14002}{81} - \frac{416\zeta(3)}{3}\right) C_F T_F^2.$$

$$a_3^{(1)}, a_3^{(0)} = ?$$

The problem is complicated (although it is only a three-loop problem) because there are two different types of lines,

The status: all the integrals contributing to  $n_l^1$  part were reduced by FIRE. Operative memory: several Gb. Creating tables of results (which are not big)

Almost all the master integrals were calculated. (Several constants in higher  $\epsilon$  terms are missing.)

Various checks:

 $\xi$ -independence,

the finiteness of the result after the renormalization

### Numerical checks by sector decompositions.

[T. Binoth & G. Heinrich'00,04; C. Bogner & S. Weinzierl'07]

One more version of SD: A. Smirnov and M. Tentyukov, to be published

It can be applied also in various cases where negative terms in the function *F* are present, e.g.  $\alpha_1^2 - 2\alpha_1\alpha_2 + \alpha_2^2$ .

All the results for the master integrals checked by this SD.

Priorities: to complete the  $n_l$  part analytically, then the  $n_l^0$  part.