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teps of setting up a subtraction scheme (Outline)
IR structure

@ Universal structure of explicit ¢ poles in loop corrections
@ Universal structure of kinematical singularities in real radiation

e Disentangle singularities
@ traditional approach
@ ...among doubly-unresolved limits
@ Pure-soft factorization in Coulomb gauge
@ between doubly- and singly-unresolved limits

e Phase-space factorization
@ Collinear mapping
@ Soft mapping

Q Numerical integrations
e Integration of singular factors
G Cancel ¢ poles
ﬂ Summary
@ Extra slides
Traditional steps, but all revisited
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Identify the structure of infrared singularities
(= factorization formulae): well-known

@ ¢ poles of one-loop amplitudes

IMS)({p})>=—§I°)( {PHIMP ({p})) +O(”)

1@=%Zﬁ ZTT(M“)

ki

Z. Kunszt, Z. T. 1994, S. Catani, M. H. Seymour 1996
S. Catani, S. Dittmaier, Z. T. 2000

@ ¢ poles of two-loop amplitudes

M ({p}) =
3 (TG (PDIMP () + 106 p1) MO ({p))) + ()

S. Catani 1998, G. Sterman, M. E. Tejeda-Yeomans 2003
S. Moch, M. Mitov 2007
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Identify the structure of infrared singularities
(= factorization formulae): well-known

@ universal soft and collinear factorization of QCD (squared) matrix
elements at NLO:

@ C; is a symbolic operator that takes the collinear limit

C“|Mm0+1(p17plf-")|2 < (p“v" )|P<0)|M(O (P“7"')>

PO; q::::: m( .;

@ S, is a symbolic operator that takes the soft limit

SAML (e )P ocz MO )T TIMD ()

SirSkr
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Identify the structure of infrared singularities
(= factorization formulae): well-known

@ universal soft- and collinear factorization of QCD (squared)
matrix elements at NNLO involves the

@ tree level 3-parton splitting functions and double soft gg and ¢g
currents

el e —— T
’E

J. M. Campbell, E. W. N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

@ one-loop 2-parton splitting functions and soft gluon current

Q@ —Oh,

Z. Bern, L. J. Dixon, D. C. Dunbar, D. A. Kosower 1994
Z. Bern, V. Del Duca, W. B. Kilgore, C. R. Schmidt 1998-9
D. A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
D. A. Kosower 2003
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Disentangle overlapping singularities in real radiation (to

avoid multiple subtraction)
@ Simple at NLO:



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
00 00000 00

Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Simple at NLO:

@ The candidate subtraction term. ..

? 1
A |'/\/lm+l|2 Z Z Ecir |'A/lm+1|2
r i#r
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Simple at NLO:

@ The candidate subtraction term. ..

? 1
A |Mm+l |2 Z Z Ecir +5, |Mm+l |2
r i#r

.. has the correct singularity structure but performs double
subtraction in the regions of phase space where the limits overlap
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Simple at NLO:

@ The candidate subtraction term. ..

Ay |Mm+1| = Z [Z %Ciﬁ- (Sr - ZCi,S,>

r i#r i#r

2
m+1|

@ ...is now free of double subtractions
.. but only defined in the strict collinear and/or soft limits
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)
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Disentangle overlapping singularities in real radiation (to
avoid multiple subtraction)

@ Becomes rather involved at NNLO:

@ possible (G. Somogyi, V. Del Duca, Z. T. 2006)

but try to do better!
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Pure soft limit of the squared matrix element
@ Using the soft insertion rules one obtains

S IMS) (pr, P
<L N S (0)
ZZZ%(PJ%(PJT@V% (- T Tl MG ()
i=1 k=1 hel. irkr

pyn” + pin*
prn .

d" (prn) = ) enlpr)es(pr) = —8™ +

hel.
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Pure soft limit of the squared matrix element
@ Using the soft insertion rules one obtains

S|Mm+1 )P o
SN S e () 2‘?’” MO )T TIMO(. )

i=1 k=1 hel. SirS

. . L pln® +pinb
d*(prn) =3 eu(prles(p) = —g + L TP

‘n
hel. Pr

e Soft-collinear contributions are given by the
colour-diagonal terms,

S, |Mm+l ,,...)|20<

" | - Sik 2Sin 2Skn
= - - MO (T T MO
i:Z] [2 ; (Sirsrk SrnSir 51‘/15kr> < " ( )‘ ]“ " ( )>

2 in
—T?—S—|M,(,?)(...)|21 Sin = 2pin

Sir Srn



00 00®000

00

IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel e poles Summary Extra

Pure soft limit of the squared matrix element
@ Using the soft insertion rules one obtains

S,|M +1(pr,~-~)|

2
D)D) SRS ’7’ PEAMO (I TIMP.)
i=1 k=1 hel. SirsS
d" (p,,n) = Zgu(pr)gu + ptn” 4+ pin* .
hel. prent
e choose Coulomb gauge and keep the pure soft only
IM(()

m+l( r )‘2 -

i_”; [%i < j§,‘k _ 2Sl‘Q _

ki SirSrk

ZYkQ <M(()) (
SrQSir SrQSkr
with n# =

m

T Tl M)
0" — pt @ /sro and colour — conservation

[m]

=




@ at NLO:

Collinear and soft limits are automatically disjoint

DA



Collinear and soft limits are automatically disjoint
@ at NLO:

DA
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Collinear and soft limits are automatically disjoint

@ at NLO:
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Collinear and soft limits are automatically disjoint

@ at NLO:
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Collinear and soft limits are automatically disjoint

@ at NLO:



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
00 000®00 00

Collinear and soft limits are automatically disjoint

@ at NLO:



The perturbative expansion at NNLO accuracy
o = o0 4 gNLO | GNNLO

«0O0>» «4F)»r « =)

<

DA



The perturbative expansion at NNLO accuracy
o = o0 4 gNLO | GNNLO

@ Consider eTe~™ — m jet production

o L0

o0 = [ dob = [dg,| M [P

DA



The perturbative expansion at NNLO accuracy
o = o0 4 oNLO 4 GNNLO

@ Consider eTe~™ — m jet production

e LO

o0 = [ dob = [dg,|M [
O_NLO

fm+1 da,Rn+1 + fm da,\n/

= [ a0l ML Pl + [ A6, 2Re(ML MG )



The perturbative expansion at NNLO accuracy
0':0'L0~|—0'NL0~|—0'NNL0—|-...

@ Consider eTe~ — m jet production
s LO
S0 — B _ (0) 2
= [ dob = [dp,| M|

w0 @0 o 8

fm+1dam+1 + f doy

= [dp, MY

b + [ d¢m2Re<M£P|M<°>>

wo@® OB @

o = fm+2d‘7m+2+ fm+1d‘7m+1 + f do," =
= L4612l MO, Py + [ 06, 2ReMED TMO) gy +

+ [ de [ <"|2+2Re<M<2’|M<°’>]



The perturbative expansion at NNLO accuracy
o =og"0 4 gNLO L gNNLO

@ Consider eTe~ — m jet production
s LO
o0 = [ dob = [dg,| M [P
O_NLO

e NLO ®
S5,
_ TR

fm+1dam+1 + [ dop

= fd¢m+1|Mr(n0->H 21'"4-1 + fd¢m2Re<M(l)|M(o>>
@ NNLO )
o NNLO

()

()

= [ by ol M, Pdga + [ 4,y 2ReME) M) g +
+ + +

+ [ o [ <"|2+2Re<M<2’|M<°’]
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Structure of subtraction is governed by the jet function
O.NNLO — UETEO + O.rIZI_;I_ITO + O.rIiNLO —
- {dagizj,nH —do™Reg, — (da,‘f,i’fvm“ doR® e m)}

RV, A RR,A,
+fm+1 {(dgnﬂrl + fl dam+2 )‘]’"JH - [ Om+1 '+ (f] ) ) }Jm}

i {doy¥+ Jy (donSa —donite )+ [donit + ( dontis ) A1) o
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Structure of subtraction is governed by the jet function
UNNLO — O.NNLO + UNNLO + O.NNLO —
m+2 m-+1 m

RR RR,A. RR,A RR,A
- H{dam R Jio | doste gl — (doR™ g, 0 — domiiey,

RR, RV,A RR,A,
+fm+1 {(dO’EYH +fl dUm+2])J1n+1 - [ O nti1 '+ (fl ) ) }J’"}

+ 0, {0y B (aoBS - 0o+ [daiii*‘ +(faat )]

@ The approximate cross section dot
doubly-unresolved limits of doR® ,

+2 > regularizes the



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
00 000000 00

Structure of subtraction is governed by the jet function
UNNLO — O.NNLO + UNNLO + O.NNLO —
m+2 m-+1 m

A
= Sy {47 T2 — doy 2 = (Aot s [ do )}
RR,A RV,A RR,A,
+fm+1 {(dgl&il + fl d"m—i—Zl)Jm‘ir1 [ Oyt T+ (fl Tt ) ]Jm}

oy {donY 4y (don = doRite ) 4 [daiifw(fl onit )™ o

@ The approximate cross section dot
doubly-unresolved limits of doR® ,

@ The approximate cross section dam +2 ' regularizes the
singly-unresolved limits of do®%,

+2 > regularizes the



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
00 000000 00

Structure of subtraction is governed by the jet function
O.NNLO NNLO + O.NNLO + UNNLO

RR,A RR,A RR,A

= fm+2 {dO’EIiZ.]"H»’) dam+2 2 mH(d m+2 IJmJ"l d m+2 IZJm }
RR,A RV,A RR,A;

+fm+1 {(dO’EYH + fl dO’m+2 ])Jm+l - [ O nti1 '+ (fl ) ) }J’"}

41, {aoy + (a0 EaatSd) 1 [daiif‘+(f1 a0t

@ The approximate cross section do +2 ? regularizes the
doubly-unresolved limits of doR® ,

@ The approximate cross section dam +2 ' regularizes the
singly-unresolved limits of do®%,

. . RR,A :
@ The approximate cross section do,,.’, " regularizes the

singly-unresolved limits of daﬁ’fz and the doubly-unresolved

_ RR,A
limits of do, "




IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
00 000000 00

Structure of subtraction is governed by the jet function
UNNLO — UNNLO + UNNLO + O.NNLO —
m-+2 m-1

— RR RR,A, RR,A; RR, A12
= Jrvir {4088 T2 — do s = (dopi S T — donid

Ly { (4004 doR )1 [ faaR o (O doitgt )

+ g {aov (a0 — o) O e A 1

. . RR,A. .
@ The approximate cross section do,,.,* regularizes the
doubly-unresolved limits of doR® ,

@ The approximate cross section don," regularizes the
singly-unresolved limits of do®%,

. . RR,A :
@ The approximate cross section do,,.’, " regularizes the

singly-unresolved limits of do}f}i’? and the doubly-unresolved

. RR,A
limits of do, "

RR,A
@ The approximate cross sections da & and (fl Tppin ‘)A‘
regularize the singly-unresolved Ilmlts of doR¥ | and [ daii’f‘
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Phase-space factorization

e Approximate cross sections are constructed from the
factorization formulae extended over the whole phase
space
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Phase-space factorization

e Approximate cross sections are constructed from the
factorization formulae extended over the whole phase
space

e This extension requires momentum
mappingsi{p}nJrs - {ﬁ}n that

o implement exact momentum conservation

o lead to exact phase-space factorization

e can be generalized to any number s of unresolved
partons
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Phase-space factorization

e Approximate cross sections are constructed from the
factorization formulae extended over the whole phase
space

e This extension requires momentum
mappingsﬂ{p}n+s - {ﬁ}n that

o implement exact momentum conservation

o lead to exact phase-space factorization

e can be generalized to any number s of unresolved
partons

o We use separate phase space mappings for the
collinear and soft limits



Collinear mapping (for s = 1)
1
~H = — M Mo : ] pH
plr l_air(pl +pr Oler )7 n

1
p =

g i
1
2
Qjy = 5 |:))(ir)Q - \/y(ir)Q - 4Yir:|
i
Gy ir !
m+1

«O» «F»r» « >

<

DA
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Collinear mapping (for s = 1)

- 1 N 1 .
Pf;:l_—%(P7+Pf—aer“)a pﬁ: l_airpﬁy n;él,}"

1 2
Qi = E |:y(ir)Q - y(ir)Q - 4’yir:|

mt1 s

ir
@ phase-space factorization is exact

d¢m+l(p15 S Q) = d¢m(ﬁla s Q) ® d¢2(piapr;p(ir))

@ momentum is conserved pi + 3" pE = pt +pt + 3 pk
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Collinear mapping (for s = 1)

- 1 N 1 .
Pf;:l_—%(P7+Pﬁb—aer“)a pﬁ: 1_O5irptlll’ n;éz,r

1 2
Qi = E |:y(ir)Q - y(ir)Q - 4’yir:|

m+1 m1

@ momentum is conserved pi, + > pt = pt' +pt + > pk
@ phase-space factorization is exact
do,,. . 1 (P1,...;0) = do,,(P1,...; Q) @ do, (pi, priPiry)
@ integral over convolution can be constrained to improve
numerical efficiency



Soft mapping (for s = 1)

Py =A[Q,(Q = p) /NPy /A) s n#

)\r:\/l_yr 5
A%Kazthm+kwm+kn

2KHK,,
(K + K)? K2

m+1
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Soft mapping (for s = 1)
Py =AJI0,(Q —p )/ My /A), n#Er, A= y1-y0,

2(K+K)*(K+K), 2K'K,
(K +K)? K?

ALK K] = gl —

1
r
S, /\/
m+ 1 ro— 2 g
Q

m+1 m+1

@ momentum is conserved > pk = pt + > ph
@ phase-space factorization is exact
d¢m+l(P15 s vQ) = d(bm(ﬁla .- 7Q) ®d¢2(praK7Q)

@ integral over convolution can be constrained to improve
numerical efficiency



Compuite finite integrals numerically using Monte Carlo
integration
O.NNLO _ o.rl:'lilio

[ { (o 0ok ) — aokit + (10
+ fm {da,\,iv~|- fz (daﬁi’f 2 doRRAR

RV,A RR,A
m+2 ) +.f1 [ m+1 '+ (fl dam+2 1)A1} }Jm
@ Each integral on the r.h.s. is finite in d = 4 provided J is IR safe
@ Subtraction terms are fully local

important for numerical stability and reduction of CPU time
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Event shape distributions (still unphysical at NNLO, VV missing)
C-parameter Thrust

C-parameter distribution Thrust distribution

1oy € doldC
Vo (1-T) doldT’

1y C doldC

Voy (1-1) doldT’
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Event shape distributions (still unphysical at NNLO, VV missing)
C-parameter Thrust

C-parameter distribution Thrust distribution

1oy € doldC
1oy (1-7) doldT

S ol e S SRR a1

1y C doldC

Pricetag: one desktop pc in 50 hours



Integrate the singular factors over the factorized
unresolved phase-space measures
gNNLO _ UII;IEIF%O

+ o0+ N0 =
— RR
= Jnt2 {dO’m+2Jm+2 —do

RR,A, ;

m+2 m (daR&Al‘I
+ fm+1 {(da,EYH + fl

m—+2
RR,A
do !

m+2 )Jm+1 - [

RR,A

+1 = dam+2 IZJm) }
RV, A

do, !

e (40 )2
oo )

m



Collinear integrals
S

. ;i;)(Zi,Zr;E), K/:O’l
s (4m)°
d¢2(PiaPr;p(ir)) = 8177- F(l —

3 ds;, dv5(sir — Qza(a +(1- a)x))
x (I =v)]7°0(01 -v)0(®),

DA



Collinear integrals

a@o
/ dor (1—a)*®=
0

15irg

o / do, (i, prs (i)}
er<+55 (+)
s}-l—ne 81

k=01
aQ? + 1 —a)vs;,
(zr) ( ) 0

T 2 —
200% + (1 — a)szp

«O» «F»r» « >

<

DA
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Collinear integrals

a0 157 | .
/0 da (1—a)*® 12—7(;)/d¢z(Pi,Pr;P(ir))Spr—mP;¢,)(Zi,Zr;6)a k=01

Zhtoe (i)(z ) . aQ? + (1 - Vs
l}r+rce 81 or) or 204Q2 + (1 _ OZ)S;Q
& | Function ¢ ()
0 8A 1
F1 gl(;t) (1 _ Z)ie
0 g (1 —2)*%F (+e, e, 1 £ ¢€,2)
+1| gy oFi (L€, e, 1€ 1 —2)

g
’ O(x/ daa 7R (1 — )20~ [o 4 (1 — a)x] =1 0FR)e
0

Jopo oo (G ()
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Soft-type integrals
@ Soft integrals

Y0 1+re
Joc—/o ay (1 — 12 /d¢2(PraK Q)( s’k)

SirSkr

@ Collinear-soft integrals

Y0 1+ke
]CO(/O y( )do 1 /d¢2(prvK Q) <Sfr §r>

(@) _(4m) (=9, o
lor7 T(1—g T(1 =297 00 =)

xd(cos ) d(cos ) (sin ) "¢ (sin ) ~1 7%

d¢2(PraK; Q) =
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Soft-type integrals
@ Soft integrals

Y0 1+re
Joc—/o ay (1 — 12 /d¢2(PraK Q)( s’k)

SirSkr

@ Collinear-soft integrals

Y0 1+ke
]CO(/O y( )do 1 /d¢2(prvK Q) <Sfr§r>

(@) _(m) I*(1—¢) el
167 T(1— ) (1 = 2¢) & ol —e)
xd(cos¥) d(cos ) (sin ) ~*(sin )

d¢2(PraK; Q) =

—1-2¢

@ and iterated integrals of the above, like Z4Z, 77, J+L, KiL etc.
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Three methods of computing the integrals

@ lterated sector decomposition and residuum subtraction to find
Laurent expansion, compute expansion coefficients numerically
G. Somogyi, Z. T. 2008

@ Algebraic reduction, reduction to master integrals using IBP and
computation of Ml using differential equations
U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, Z. T. 2008

@ Expand MB representation of integrals in ¢, and compute
harmonic sum representation of the expansion coefficients
P. Bolzoni, S. Moch, G. Somogyi, Z. T. 2008
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldarl;li?l = dUE-H ®I(0)({P}m+1?€)

I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; O T; + Zgi(lg)(yik,Q; €)T;- Ty
i Kt
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldarl;li?l = dUE-H ®I(0)({P}m+1?€)

I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; O T; + Zgi(lg)(yik,Q; €) Ti‘Tk:|

i ki
1 1 /3
CO(x;¢) = -+ = (— - 21nx) +0(Y,
€ € \2
1 1 /11 2 T
COx;e) = - (F — gnfc—i - 21nx> +0(£9),
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/1 40N = do% | & 1O ({p) i)

0 =(0
1O(p)rie) x 3 [CE i) T2+ 8 (Vior ) T T

i k#i
Order: &° Order: ¢! Order: &2
x10° x10° 10
4r — =1 4 — =1 1 3 — =1
—— ap=03 ——ap=03 25l —— =03 |]
—~ 3r —— =01 |[] 3r —— =01 | - = a=01
W -~ ap=0.03 -~ ag=003 20 --- ap=0.03 |{
$o2f 4 2 4
= 15
S = 1r 1k 1k
05F
of of
ol
1 1 . 05
6 5 -4 3 2 -1 0 6 5 -4 3 2 -1 0 6 5 -4 3 2 -1 0
log;ox log;ox log;ox

Figure: Expansion coeffiecients of the functions C\” (x;<)
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/1 40N = do% | & 1O ({p) i)

0 <0
19{p},se) < > [CE 'igr€) T2+ S (Vi1 €) Ty T
i ki

1

Order: Order: ¢! Order: &2

x10° LT T T T %10

02f
04 F
06 F
/
0.8 [/

2f

14

-16
6

o LUbdhhhbbLo
SRR ARAN: T

6 -5 4 3 2 -1 0 6 -5 4 -3 -2 -1 0
log;, ¥

log;, ¥

Figure: Expansion coefficients of the function S\ (¥; )
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldarl;li?l = dUE-H ®I(0)({P}m+1?€)

I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; O T; + Zgi(lg)(yik,Q; €)T;- Ty
i Kt
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldarl;li?l = dUE-H ®I(0)({P}m+1?€)

I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; O T; + Zgi(lg)(yik,Q; €)T;- Ty
i Kt

[ aoit = aa) @ 1O (phi0) + 40k 0 10 ({p) 159
1
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldarl;li?l = dUE-H ®I(0)({P}m+1?€)

I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; O T; + Zgi(lg)(yik,Q; €) Ti‘Tk:|
i Kt

[ aoit = aa) @ 1O (phi0) + 40k 0 10 ({p) 159
1

J([arsa )™ = aske | {10 b 10 has O} + 1O i)
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Combine integrated subtraction terms with loop
corrections to cancel e poles
Write the final result of integrations in the forms:

/ldorl:zliﬁl = dUE-H ®I(0)({P}m+1§€)
I(O)({P}mﬂ? €) o Z [Ci(o)(yiQ; OT; + Zgi(lg)(yik,Q; €) Ti‘Tk:|
i kA
[ aoit = aa) @ 1O (phi0) + 40k 0 10 ({p) 159

1

J([arsa )™ = aske | {10 b 10 has O} + 1O i)

[ (aotid —aollide) = aoh o
2



Summary
@ Usual steps of subtraction methods followed, but
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Summary
@ Usual steps of subtraction methods followed, but
singularities

@ used new, pure-soft factorization to avoid overlapping

DA
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Summary
@ Usual steps of subtraction methods followed, but
@ used new, pure-soft factorization to avoid overlapping
singularities
@ proposed new phase-space factorizations for defining subtraction
terms
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Summary
@ Usual steps of subtraction methods followed, but
@ used new, pure-soft factorization to avoid overlapping
singularities
@ proposed new phase-space factorizations for defining subtraction
terms

@ existing techniques (iterated sector decomposition, IBP, MB) can
be extended to compute integrals over the unresolved phase
spaces
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Summary
@ Usual steps of subtraction methods followed, but
@ used new, pure-soft factorization to avoid overlapping
singularities
@ proposed new phase-space factorizations for defining subtraction
terms

@ existing techniques (iterated sector decomposition, IBP, MB) can
be extended to compute integrals over the unresolved phase
spaces

@ Complete scheme for NNLO computations is worked out



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
e} 000000 (o]

Summary
@ Usual steps of subtraction methods followed, but
@ used new, pure-soft factorization to avoid overlapping
singularities
@ proposed new phase-space factorizations for defining subtraction
terms

@ existing techniques (iterated sector decomposition, IBP, MB) can
be extended to compute integrals over the unresolved phase
spaces

@ Complete scheme for NNLO computations is worked out

@ Only partially completed: integrations over the unresolved phase
spaces
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Summary
@ Usual steps of subtraction methods followed, but
@ used new, pure-soft factorization to avoid overlapping
singularities
@ proposed new phase-space factorizations for defining subtraction
terms

@ existing techniques (iterated sector decomposition, IBP, MB) can
be extended to compute integrals over the unresolved phase
spaces

@ Complete scheme for NNLO computations is worked out

@ Only partially completed: integrations over the unresolved phase
spaces

Thanks for your attention!
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The standard integrated approximate cross sections do not obey
universal IR collinear factorization
@ Due to coherent soft-gluon emission from unresolved partons
only the sum <M( (T Ty + T, Tk)|/\/lm+1> factorizes in the
collinear limit (7;, =T, + T,)

0 0 1 (0
Cr ML (T T+ T T ML) o — (M| Ty PP M)
Jr



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s
[e]e} 000000 00

The standard integrated approximate cross sections do not obey
universal IR collinear factorization

@ Due to coherent soft-gluon emission from unresolved partons

only the sum <M( (T Ty + T, TA)|Mm+1> factorizes in the
collinear limit (7;, =T, + T,)

0 0 1 ~(0
Cir (ML (T T+ T T M) o — (M [T T P M)
Jr

@ This factorization is violated by the factors s, /¢

0 0
G S MOLT T+ T s NIM,) o

1 1
X — [<M£,?>|T Ty P (; - —Insg, >k> M)

Sjr

m

1
—= (MONT;-TyInz; + T, Ty Inz, [ MY >]
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The standard integrated approximate cross sections do not obey
universal IR collinear factorization

@ Due to coherent soft-gluon emission from unresolved partons

only the sum <M( (T Ty + T, Tk)|/\/lm+1> factorizes in the
collinear limit (7;, =T, + T,)

0 0 1 ~(0
Cr ML (T T+ T T ML) o — (M| Ty PP M)
Jr

@ This factorization is violated by the factors s, /¢

0 0
G S MOLT T+ T s NIM,) o

1 1
x— [<M£,?>|T T P (; — ~Insg, >k>|Ms?>>
jr

(/\/l(o T;- TyInz; + T, TyInz, M >]

@ = local subtraction requires properly defined new approximate
cross sections
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Collinear limit of color-connected SME
@ Due to color coherence only the sum

2 2
|Mm+1 (i, l)| + |Mm+1 (r, l)|

has a universal collinear limit as p;||p,, not |M(°) Ll or
MO -p|* separately
@ Generally we have

L=V M) (YLD 4 VMO (YD +

@ C,; I exists iff
o CirVil CtrVrl V(u)l
i ’H' ir 7l illr ir)
o {phil, A5 I, {Brid, A (H
@ Then Ci o LV (MY (3T TP, M<°> pin"
e ird X P (1r)l< m ({p}m )| ird | lr| m ({p}m )>
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Monte Carlo summation over helicity in NLO computations

@ proved to be useful to gain speed in multileg computations at
Born level

P. Draggiotis, R. H. P. Kleiss, C. G. Papadopoulos 1998, 2002
@ Gaining speed is even more important in computing real radiation
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Monte Carlo summation over helicity in NLO computations

@ proved to be useful to gain speed in multileg computations at
Born level

P. Draggiotis, R. H. P. Kleiss, C. G. Papadopoulos 1998, 2002
@ Gaining speed is even more important in computing real radiation

@ The pure-soft factorization is independent of the soft-gluon
helicity

S|Mm+l AP
m m

OME Z Sk 2o 290 ) (0O 7T MO )

SirSrk S,~QS,‘,- S,-QSkr

i=1

2 Sin
~TF = ML)

Sir Srn
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Monte Carlo summation over helicity in NLO computations

@ proved to be useful to gain speed in multileg computations at
Born level

P. Draggiotis, R. H. P. Kleiss, C. G. Papadopoulos 1998, 2002
@ Gaining speed is even more important in computing real radiation
@ The pure-soft factorization is independent of the soft-gluon
helicity
e Can define collinear and pure-soft subtractions for
fixed helicities

ML () )P —

—Z{ Z( ko e ?““,Q)M? (- ITTIMO( )
i=1

SirSrk SrQSir SrQSkr



Towards event shapes
@ Constructed do}™0 (RR) and do}™NtO (RV) for ete™ — 3 jets

(ete™ — qggggg and ete™ — gggg subprocesses respectively)

«O» «F»r» « >

<

DA



IR structure Disentangle singularities Phase-space factorization Numerical integrations Integration of singular factors Cancel € poles Summary Extra s

e} 000000 (o]

Towards event shapes
@ Constructed do}™0 (RR) and do}™NtO (RV) for ete™ — 3 jets
(ete™ — ggggg and eTe™ — gggg subprocesses respectively)

@ Checked numerically that (/= Cor1—1T)

@ In all singly- and doubly-unresolved limits
RR

da?R’Azh +dos®M g, — dot
RR
doy
@ In all singly-unresolved limits
A
a0 M s — [ oMy — ([ oMYA,
RV
doy

The counterterms are fully local,
azimuthal and color correlations fully included

,A12J3

— 1
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Towards event shapes

@ Computed the RR and RV contributions to first three moments of
3-jet event shape variables thurst (7) and C-parameter

where the NNLO contribution C%’ is a sum of the RR,
RV and VV pieces

Cy) = Cok + Co + Ch

e The quantities Cg’f5 and Cgfzt are found to be finite
(O=CorO=7=1-T;n=1,2,3)

e Up to NLO accuracy perfect agreement with known
results for ete™ — 3 jets
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Towards event shapes — RR contribution
@ Prediction for moments of event shapes — RR contribution

D )
1 [ —(927£034)-10" | —(3.44 £ 0.14) - 107
2 ~3.07 +0.43 —(1.424+0.03) - 102
3 2.01 +0.12 6.29 + 1.87

@ Technical details

@ No. of MC points used: n = 40 x 2.5 - 10° (VEGAS)

@ x?/d.o.f. as reported by VEGAS: x?/d.o.f. = 0.79

@ No. of subtractions: 535 at 139 different PS points for each event
[compare with 12 subtractions at 12 different PS points for
ete™ — 4jets at NLO needed in this scheme (ggggg subprocess)]

@ Speed of code on an AMD Athlon 1.3 GHz machine with 256 MB
RAM:2.5-10° pts. ~ 2.5 h
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Towards event shapes — RV contribution
@ Prediction for moments of event shapes — RV contribution

N )

T (1.23£0.01)-10° | (433£0.05)-10°
2| (2.55+0.02)- 10> | (3.25+0.02) - 10°
3| (4.79+£0.03)- 10" | (1.80+0.01) - 10°

@ Technical details
@ No. of MC points used: n = 20 x 2.5 - 10° (VEGAS)
@ x?/d.o.f. as reported by VEGAS: x*/d.o.f. = 1.24
@ No. of subtractions: 15 at 7 different PS points for each event
@ Speed of code on an AMD Athlon 1.3 GHz machine with 256 MB
RAM: 2.5-10° pts. ~ 7 h
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Rate of convergence
RR part RV part

) N m I
e e & cti
No.of points [10°) No.of points [10] No.of points[10°] No.of points [10°]
] 8 o &
No.of points [10°] No. of paints [10'] No. of poins [10] No.of points [10°]
) 0]
ct & 9 8
No.of poinis [10°) No.of points 1] No.of points (10°] No.of points [10°]
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