

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Krakow

# FLAME-based ECAL-p readout status

This research was funded by the National Science Centre, Poland, under the grant no. 2021/43/B/ST2/01107

ECAL-p LUXE workshop, 27-31 January 2025, DESY Hamburg



# • Readout hardware status

- Amount of data generated during TB
- Schedule



## FPGA & baseboard

## Quick recap:

- FLAXE production failed  $\rightarrow$  we cannot use FLAXE-based readout for next TB
- We decided to use FLAME-based readout from previous TBs
- Existing DAQ was based on Trenz TE0808 FPGA modules, hosted on TEBF0808 development baseboards
  - But we have only three baseboards (+ fourth in TAU)
  - There was no change to buy ~10 from Trenz before June 2025



Photo Shows Similar Product

## FPGA & baseboard



## Currently we have **13 (14)** FPGA modules:

- 9 fully assembled
- 2 bought by Veta
- 2 "naked" dedicated heatsink to be fabricated by Warsaw
- (+1 in TAU)





## FPGA baseboard

We decided to use custom baseboard developed for FCAL This board had few issues:

- Most crucial parts (LVDS fanouts for clock and trigger distribution) obsolete and no longer available
- Overly complicated power supply sequence control
- Overly complicated synchronization scheme
- Custom mechanics (never made)

# I decided to upgrade the FPGA board

- Simplified power control and synchronization
- Up-to-date parts
- Fit to the 19" rack case



5/26

AGH













# Scaffolding



Needs "real" design, awaits for a few decisions:

- Usage of old tungsten plates
- Design of the transportation plate
- Faraday cage (light shielding) design is directly related to the design of the scaffolding



## Rack readout

Each rack hosts **eight** FPGA cards – two racks needed for the TB

- Each rack can work in a standalone mode
- Both racks have exactly the same hardware and are fully interchangeable
- Racks will automatically configure itself to a master slave scheme depending on how the cables are connected between them
- In case of failure cards can be easily swapped and will automatically take a new role there is no special master FPGA synchronization card

FLAME-based readout can work in a self-trigger mode

- Cosmic muons (without scintillators) or radioactive source measurements are available
- One rack can be send to Valencia (after TB) for sensor study and will not need any additional instrumentation, apart from LV power supply and a PC



12V (for FPGA) and 2.5V (for FEBs) power supply socket – regular Molex PC-like socket







## Readout rack "without rack" – backplane, cards and cooling

Special shroud designed to direct the flow of the cooling air to the front panel, away from the detector beneath

FPGA card, synchronization card and backplane PCBs submitted last week.

Estimated shipment date: this Friday



## Rack PCBs – fabrication status

| Order number<br>E1668400 |         | PCB name<br>FireDAQ_Card_Rack @   |                     | Service<br>DEFINED IMPE  | DANCE pool                | Order date<br>24 Jan 2025 |          | Planned shipment<br>31 Jan 2025 |
|--------------------------|---------|-----------------------------------|---------------------|--------------------------|---------------------------|---------------------------|----------|---------------------------------|
| NUMBER                   | TYPE    | PCB VISUALIZER®                   | ASSEMBLY VISUALIZER | REMARKS                  | STATUS 🕐                  | QUANTITY                  | FILES    | USER NAME                       |
| E1668400                 | PCB     | PCB Visualizer <sup>®</sup>       | 🖉 Analyse BOM & CPL | 0                        | Panelise                  | 15 (PCB)                  | 人        | jmoron@agh.edu.pl               |
| E1668400-ST              | Stencil | 📀 PCB Visualizer®                 |                     | 0                        | Stencil Incoming          | 1 (Panel)                 |          | jmoron@agh.edu.pl               |
| Order number<br>E1668173 |         | PCB name<br>FireDAQ_Sync_Rack @   |                     | Service<br>DEFINED IMPER | DANCE pool                | Order date<br>23 Jan 2025 |          | Planned shipment<br>30 Jan 2025 |
| NUMBER                   | TYPE    | PCB VISUALIZER®                   | ASSEMBLY VISUALIZER | REMARKS                  | STATUS 🕐                  | QUANTITY                  | FILES    | USER NAME                       |
| E1668173                 | PCB     | 📀 PCB Visualizer®                 | 🖉 Analyse BOM & CPL | 0                        | In production             | 5 (PCB)                   | 四 🔤      | jmoron@agh.edu.pl               |
| E1668173-ST              | Stencil | ⊘ PCB Visualizer <sup>®</sup>     |                     | 0                        | Accepted after inspection | 1 (Panel)                 | 📐 🔜 🧇    | jmoron@agh.edu.pl               |
| Order number<br>E1668171 |         | PCB name<br>FireDAQ_Backplane_Rac | k 🕼                 | Service<br>DEFINED IMPER | DANCE pool                | Order date<br>23 Jan 2025 |          | Planned shipment<br>30 Jan 2025 |
| NUMBER                   | TYPE    | PCB VISUALIZER®                   | ASSEMBLY VISUALIZER | REMARKS                  | STATUS 🕐                  | QUANTITY                  | FILES    | USER NAME                       |
| E1668171                 | PCB     | 📀 PCB Visualizer®                 | 🖉 Analyse BOM & CPL | 0                        | In production             | 5 (PCB)                   | <b>丛</b> | jmoron@agh.edu.pl               |



Preliminary, work in progress

Existing FLAME FEB with new sensor connectors and form-factor matching the Tframe



## FEB in Tframe

Sensors 2 and 3 as recommended during last meeting, but FEB can be moved to any position in Tframe

# PCB is too thick on the images shown, it will be 1mm thick



agh.edu.pl



# FEB with sensors in Tframe inary, work in progress 2



## Sensor pad to ASIC channel map

| A0 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31              | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | A4 |
|----|----|----|----|----|----|----|----|-----------------|----|----|----|----|----|----|----|----|----|
| A3 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | <mark>30</mark> | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | A7 |
| A3 | 0  | 2  | 4  | 6  | 8  | 10 | 12 | <mark>14</mark> | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14 | A7 |
| A3 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | <mark>31</mark> | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | A7 |
| A3 | 1  | 3  | 5  | 7  | 9  | 11 | 13 | <mark>15</mark> | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 | A7 |
| A2 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30              | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | A6 |
| A2 | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14              | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14 | A6 |
| A2 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31              | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | A6 |
| A2 | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15              | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 | A6 |
| A1 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30              | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | A5 |
| A1 | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14              | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14 | A5 |
| A1 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31              | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | A5 |
| A1 | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15              | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 | A5 |
| A0 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30              | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | A4 |
| A0 | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14              | 0  | 2  | 4  | 6  | 8  | 10 | 12 | 14 | A4 |
| A0 | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15              | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 | A4 |



## Proposed logical channel numbering in data file

|    | 0   | 1   | 2   | 3   | 4   | 5             | 6    | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|----|-----|-----|-----|-----|-----|---------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 240 | 241 | 242 | 243 | 244 | 245           | 246  | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 |
| 14 | 224 | 225 | 226 | 227 | 228 | 229           | 230  | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
| 13 | 208 | 209 | 210 | 211 | 212 | 213           | 214  | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
| 12 | 192 | 193 | 194 | 195 | 196 | 197           | 198  | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
| 11 | 176 | 177 | 178 | 179 | 180 | 181           | 182  | 183 | 184 | 185 | 186 | 797 | 188 | 189 | 190 | 191 |
| 10 | 160 | 161 | 162 | 163 | 164 | 165           | 166  | 167 | 168 | 160 | 70  | 17  | 172 | 173 | 174 | 175 |
| 9  | 144 | 145 | 146 | 147 | 148 | 149           | 150  | 151 | 15  | 53  | 14  | 155 | 156 | 157 | 158 | 159 |
| 8  | 128 | 129 | 130 | 131 | 132 | 133           | 134  | 1   | 36  | 1.  | 138 | 139 | 140 | 141 | 142 | 143 |
| 7  | 112 | 113 | 114 | 115 | 116 | 1 7           | 11 ( | 9   | 1   | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| 6  | 96  | 97  | 98  | 99  | 100 | $\frac{1}{2}$ | - 12 | 100 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| 5  | 80  | 81  | 82  | 7   | 84  | 85            | 80   | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  |
| 4  | 64  | 65  | 66  |     | 87  | 09            | 70   | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  |
| 3  | 48  | 49  | 50  | 1   | 52  | 53            | 54   | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  |
| 2  | 32  | 33  | 34  | 35  | 36  | 37            | 38   | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  |
| 1  | 16  | 17  | 18  | 19  | 20  | 21            | 22   | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  |
| 0  | 0   | 1   | 2   | 3   | 4   | 5             | 6    | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |



## Bandwidth and data

Assumptions:

- "Smooth" testbeam data collected from Monday, 18:00 till Sunday 12:00, 23h / day
- 11 layers, 256 channels each
- 1 kHz trigger rate (5 GeV electrons)

Without debug data (ZS data only at 12% occupancy): ~1 TB of data

With debug data:

 Previous TB case: 63 debug data samples / channel / event: ~175 TB of data Required DAQ bandwidth: 3.12 Gbps







## Bandwidth and data

Assumptions:

- "Smooth" testbeam data collected from Monday, 18:00 till Sunday 12:00, 23h / day
- 11 layers, 256 channels each
- 1 kHz trigger rate (5 GeV electrons)

Without debug data (ZS data only at 12% occupancy): ~1 TB of data

With debug data:

- Previous TB case: 63 debug data samples / channel / event: ~175 TB of data Required DAQ bandwidth: 3.12 Gbps
- With ~24 debug data samples / channel / event: ~65 TB Required DAQ bandwidth: 1 Gbps

Theoretical limit of system bandwidth:

- Quad UDP parallel links: **<3.8 Gbps**
- Quad WD Red Pro 4TB HDD in RAID0: <11 Gbps

New LUXE DAQ PC is equipped with 14 TB of HDD (four 4TB HDDs). If we want to collect ~65 TB, a new four 16-18 TB HDDs are needed!

There is also compression option (*results preliminary*!)



ROOT files are compressed. For example:

- TB 2022, run 4636 around 1 Mevents, 128 channels with 63 debug data samples
- Raw binary data: **16 GB**
- ROOT file size: 6.1 GB 62% compression ratio

We have tested multiple compression algorithms using file containing 25.000 events with 24 debug samples with original size of 325 MB. Such a file will be collected in 2.25 second for 11 layers

| Algorithm                                          | Compression time | Compression time to collection time ratio | Compression ratio |
|----------------------------------------------------|------------------|-------------------------------------------|-------------------|
| ROOT (algorithm ?)                                 | ?                | ?                                         | 62 %              |
| bzip2                                              | 12.5 s           | 5.5                                       | 67 %              |
| gzip / zip                                         | 16 s             | 7.1                                       | 53 %              |
| 7z                                                 | 32.9 s           | 14.6                                      | 72 %              |
| 7z using bzip2 multicore using all cores of the PC | 1.9 s            | 0.85                                      | 67 %              |
| zstd highest compression                           | 1m 57.7 s        | 141.6                                     | 65 %              |



ROOT files are compressed. For example:

- TB 2022, run 4636 around 1 Mevents, 128 channels with 63 debug data samples
- Raw binary data: **16 GB**
- ROOT file size: 6.1 GB 62% compression ratio

We have tested multiple compression algorithms using file containing 25.000 events with 24 debug samples with original size of 325 MB. Such a file will be collected in 2.25 second for 11 layers

| Algorithm                                          | Compression time | Compression time to collection time ratio | Compression ratio |
|----------------------------------------------------|------------------|-------------------------------------------|-------------------|
| ROOT (algorithm ?)                                 | ?                | ?                                         | 62 %              |
| bzip2                                              | 12.5 s           | 5.5                                       | 67 %              |
| gzip / zip                                         | 16 s             | 7.1                                       | 53 %              |
| 7z                                                 | 32.9 s           | 14.6                                      | 72 %              |
| 7z using bzip2 multicore using all cores of the PC | 1.9 s            | 0.85                                      | 67 %              |
| zstd highest compression                           | 1m 57.7 s        | 141.6                                     | 65 %              |
| zstd                                               | 1.2 s            | 0.53                                      | 56 %              |
|                                                    | Premn            | linairy                                   |                   |



| Capacity | WD Red Plus | WD Red Pro | Quad HDD<br>capacity | EUR / TB  |
|----------|-------------|------------|----------------------|-----------|
| 8 TB     | 231         | 268        | 32 TB                | 28.9 / 34 |
| 10 TB    | 296         | 320        | 40 TB                | 29.6 / 32 |
| 12 TB    | 313         | 380        | 48 TB                | 26 / 32   |
| 14 TB    |             | 420        | 56 TB                | 30        |
| 16 TB    |             | 424        | 64 TB                | 26.5      |
| 18 TB    |             | 522        | 72 TB                | 29        |
| 20 TB    |             | 575        | 80 TB                | 29        |
| 22 TB    |             | 640        | 88 TB                | 29        |
| 24 TB    |             | 699        | 96 TB                | 29        |

*Currently we have four 4 TB WD Red Pro. Motherboard supports only four drives* 

https://www.westerndigital.com/de-de/products/internal-drives/wd-red-pro-sata-hdd?sku=WD161KFGX

agh.edu.pl



### Assuming "smooth" testbeam:

• data collected from Monday, 18:00 till Sunday 12:00, 23h / day

#### we are going to collect ~475 M events

## We need detailed physics plan for the TB

- What we want to measure configurations, X-Y scans, rotations
  - How many steps, how many events / configuration

We need to estimate time needed for "manual labour" inside area – e.g. X-Y scan can be made using green stage, rotation needs entering the area but is quite fast, but changing the stack can be quite time consuming task.

Detailed plan will allow to estimate the amount of collected data more precisely. In addition, the more detailed study on ZSTD compression will give us quite exact HDD space requirements.

## We need to think about post-TB logistics:

- How long it will take to disassemble the detector
- Do we want to do it on Sunday or find some space to work on Monday and use the beam time up to the limit?
- We agreed that everything goes back to Krakow, right?



## Schedule

|                  |               |   |    |    |   |   |   |    |   |   |    |     |   | <del> </del> |    |      |   |   |    |    | <u> </u> |      |     |
|------------------|---------------|---|----|----|---|---|---|----|---|---|----|-----|---|--------------|----|------|---|---|----|----|----------|------|-----|
|                  |               |   | Já | an |   |   | F | eb |   |   | Ma | rch |   |              | Ap | oril |   |   | Ma | ay |          | Ju   | ıly |
|                  |               | 1 | 2  | 3  | 4 | 1 | 2 | 3  | 4 | 1 | 2  | 3   | 4 | 1            | 2  | 3    | 4 | 1 | 2  | 3  | 4        | 1    | 2   |
|                  | design        |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| EDCA & rack DCBs | manufacturing |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| FPGA & TACK PCBS | assembly      |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | testing       |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | design        |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | manufacturing |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| FEB              | assembly      |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | testing       |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | calibration   |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          | Ju 1 |     |
| Firmware         |               |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| Middleware       |               |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| Packing          |               |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
| ТВ               |               |   |    |    |   |   |   |    |   |   |    |     |   |              |    |      |   |   |    |    |          |      |     |
|                  | 1             | 1 | 1  |    |   | 1 |   | 1  | 1 | 1 |    |     | 1 | 1            |    |      | 1 |   | 1  |    |          |      |     |

Not included here:

- Software see Dawid talk
- Mechanical integration tbd.