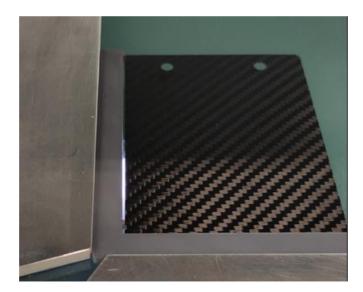
ECALp Sensor plane status

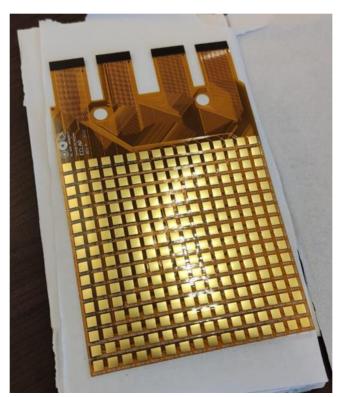
Melissa Almanza, C. Blanch, S. Huang, <u>A. Irles</u>, Carlos Orero

*AITANA group at IFIC – CSIC/UV



Metrologies – CF manufacturing

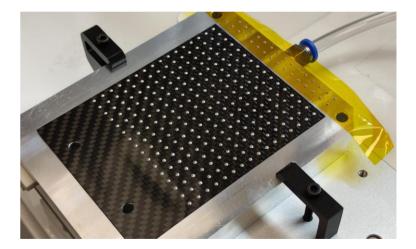
IFIC INSTITUT DE FÍSICA CORPUSCULAR


- Results of CF metrologies were disappointing. We ruled out this manufacturer.
- We haven't found another manufacturer. 4 companies were contacted, asked if they could do the job and if not, if they would recommend a company to do it.
- Asked Francois Boyer, from composite lab at CERN, if they could manufacture the part.
- Would contact ARISTO (cutting machine equipment manufacturer) to make some tests.
- We are considering using an alternative material. More on that idea at the end.

Metrologies – Fan out kapton

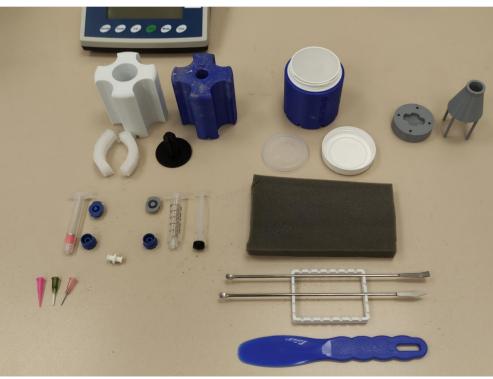
- Metrologies will be done with the new Fan Out Kapton provided by Yan during this DESY workshop.
- We will check thickness, general dimensions and quality of the edges during W6-W7
- We will do the same as soon as we receive HV kaptons.

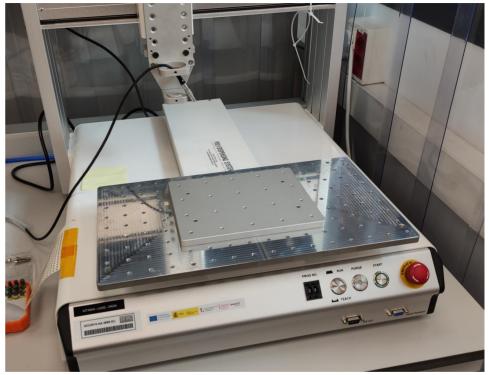
ECALp Fan Out Kapton revA


Gluing

In previous tests we managed to:

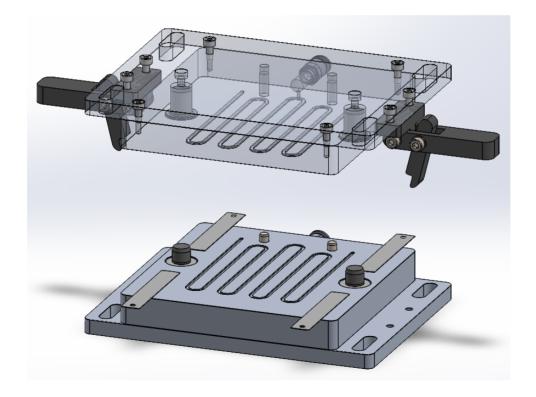
- Develop a procedure to mix the bicomponent epoxy glue with only 5% mass loss.
- Develop a procedure to assembly a sensor plane using our tooling.
- During W6-W7 we will assembly CALICE sensors. We will rehearse and consolidate the procedure.
- W15-W16 start assembling ECALp sensor planes.





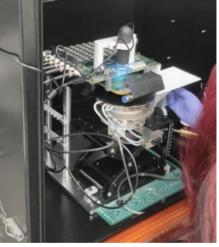
Gluing

Glue mixing tooling


New and bigger table for the dispenser robot

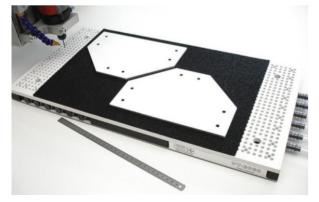
Tooling

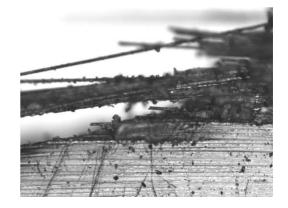
- Jigs are next in the queue for manufacturing at IFIC workshop.
- The design was ready months ago, but some other jobs (from our side and other projects) have been fabricated first.
- W7-W8 jigs finished, checked and tuned.



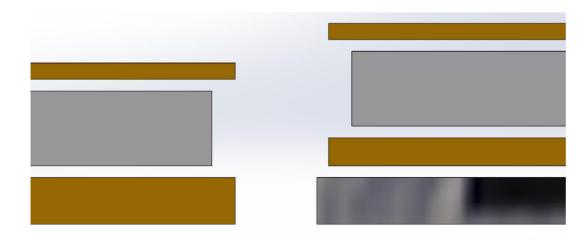
Clean room

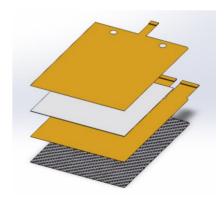
- Clean room is ready.
- Particles in the air were measured (ISO5 compliant)
- We have an ultrasonic cleaner for the jigs and gluing tools.
- Probe station is almost ready.




CF manufacturing challenges

- Work holding: vacuum or gluing. Prone to lifting during machining.
- Drilling holes is difficult because the reduced rigidity of the sheet.
- CF dust is hazardous. Aspiration of dust or machining under water (both with filtration systems). This
 usually leads to have dedicated machines to do the jobs. For example, at DESY it is not allowed to cut
 CF in its workshops.
- Laser cutting is not suitable because it burns the material.
- There are special composition CFRP laminates for machining, but I haven't found them in thin laminates.
- Not found yet a reliable provider for this part that will meet the specifications.
- We will explore cutting it with an ARISTO machine.





8

Is there an alternative?

- IFIC INSTITUT DE FÍSICA
- What is the function of the CF layer? Are there any mechanical requirements for this layer? Could we change the material? What if we made it from Kapton? And if so.... Why do not consolidate functions in the same part?
- We would like to explore the possibility of eliminating the CF layer and make a thicker HV Kapton or Fan Out Kapton to give rigidity to the sensor plane.
- One less component means one less gluing step. Reduces costs and CF technical challenges.
- Thicker FO or HV Kapton. Which one?
- In the picture below, thicker Fan Out just for comparison. Overall sensor plane thickness reduced in 170 um.

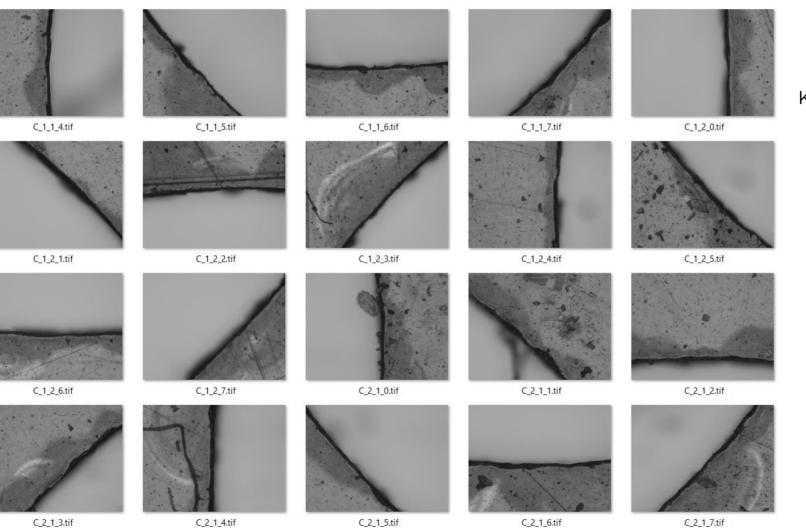
Exploration - thicker kapton

- To move in this direction, we manufactured a 70um Kapton sample at IFIC using laser cutting.
- Edge circularity and edge "sharpness" were good enough, taking into account that our laser cutting machine is not a state of the art equipment and the cutting parameters (speed, power, pulsating frequency were not finely tuned).
- I find interesting using Kapton because it is cheap (both the raw material and the cutting process), fast to manufacture and I believe we can adjust the design and the cutting parameters so that we reach the required specifications.

70um Kapton test sample.

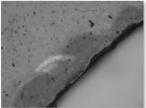
80x80mm square with 6.0 mm holes spaced 47.0 mm.

Exploration - thicker kapton

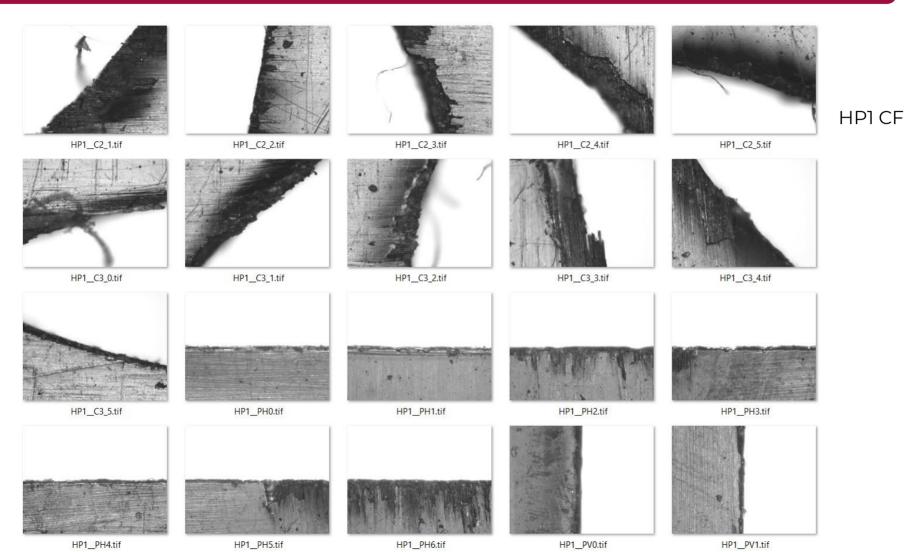


							CORPUSCUL
Círculo: C1_1(ID:44, a partir Coord. X = 9,002			HP1	HP2	HP3	HP4	HP5
Coord. $Y = 8,906$		Linealidad L1	0.103	0.04	0.053	0.055	0.049
Coord. Z = 0,000		Linealidad L2	0.022	0.056	0.02	0.053	0.005
Diámetro = 6,020		Distancia L1-PV1	89.652	89.958	89.875	89.935	89.877
Radio = 3,010		Distancia L1-PV2	89.663	89.936	89.904	89.933	89.871
Circular. =	0,015772	Distancia L1-PV3	89.709	89.94	89.859	89.933	89.889
Círculo: C1 2(ID:53, a partir	de 8 puntos)	Distancia L1-PV4	89.728	89.917	89.832	89.898	89.855
Coord. $X = 9,090$		Distancia L1-PV5	89.752	89.941	89.821	89.906	89.848
Coord. Y = 55,995	072	Distancia L1-PV6	89.761	89.958	89.841	89.885	89.837
Coord. Z = 0,000		Distancia L1-PV7	89.806	89.955	89.863	89.898	89.865
Diámetro = 6,058							
Radio = 3,029		Distancia L1-PV8	89.786	89.96	89.891	89.892	89.86
Circular. =	0,026606	Linealidad PV	0.042	0.045	0.078	0.027	0.04
Círculo: C2_1(ID:62, a partir	de 8 puntos)	Distancia L2-PH1	119.767	119.81	119.778	119.775	119.825
Coord. $X = 32,506$		Distancia L2-PH2	119.756	119.796	119.752	119.76	119.816
Coord. Y = 8,859		Distancia L2-PH3	119.75	119.775	119.734	119.781	119.792
Coord. Z = 0,000	0000	Distancia L2-PH4	119.776	119.801	119.742	119.809	119.792
Diámetro = 6,005		Distancia L2-PH5	119.812	119.84	119.764	119.853	119.819
Radio = 3,002		Linealidad PH	0.022	0.056	0.02	0.053	0.005
Circular. =	0,019520	Diámetro C1	6.072	6.067	6.064	6.07	6.052
Círculo: C2_2(ID:71, a partir	· de 8 puntos)	Circularidad C1	0.064	0.075	0.032	0.063	0.037
Coord. X = 32,616		Diámetro C2	6.03	5.95	6.058	5.982	6.014
Coord. Y = 55,928		Circularidad C2	0.013	0.054	0.041	0.055	0.045
Coord. Z = 0,000		Diámetro C3	6.03	6.044	6.04	6.038	5.991
Diámetro = 6,052		Circularidad C3	0.069	0.044	0.029	0.038	0.038
Radio = 3,026 Circular. =	0,012964						
Circular, =	0,012904	Distancia C2-C3	0.075	0.187	0.138	0.096	0.14
Círculo: C3 1(ID:80, a partir	de 8 puntos)	Distancia C1-PMC	46.948	47.066	47.001	47.019	46.946
Coord. X = 56,034		Distancia L1-C1	21.313	21.368	21.376	21.334	21.45
Coord. Y = 8,775	206	Distancia L2-C1	109.697	109.843	109.812	109.86	109.822
Coord. Z = 0,000							
Diámetro = 6,016							
Radio = 3,008							
Circular. =	0,026961						

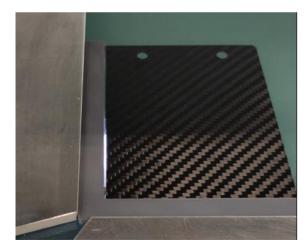
Alternative?



Kapton test cut

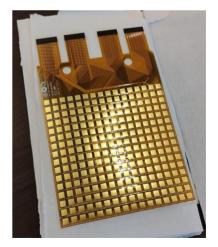

C_2_1_5.tif

Alternative?



13

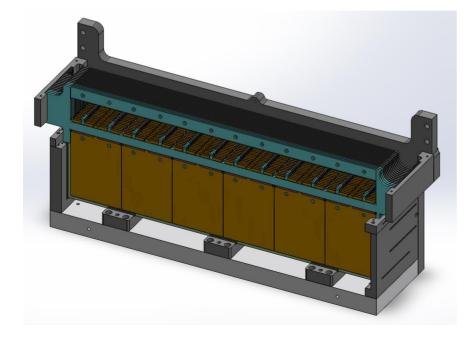
Kapton alternative?


- We are in conversations with some manufacturers (circuit-labs, Wurth electronics) to manufacture a Kapton with the geometry of the CF to perform metrology and check its rigidity.
- If the results are promising, we could consider manufacturing a thicker HV Kapton or Fan Out Kapton.

First

Then this?

Schedule



• A rough schedule of our next steps.

										30 june to 6 july
W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W27
DESY workshop	FO metrologies									
	CALICE gluing									
			Jig tuning and testing						ECALp gluing	
					Slow month because of holidays					

This is the end

Thank you for your time.

