

Malte Trautwein

Undulator Simulations in CAIN for the HALHF Positron Source

Motivation

- Verify simulations regarding photon spectra
- Finding suitable parameters to maximise e⁺-yield
- Optimize polarization of positron source
- Consider technical limitations

ILC Positron Source - Comparison

ILC-Parameters: K=0.85 E=128 GeV λ_u =1.15cm

3

Photon number spectrum

Fig. 4: Photon number spectrum by CAIN

Floettmann: K=1.5 E=250 GeV λ_u = 0.9 cm

4

Positron number spectrum: K=1.5 E=250 GeV λ_u = 0.9

Fig. 5: Estimated positron spectrum for helical undulator K. Floettmann, Investigations Toward the Development of Polarized and Unpolarized High Intesity Positron Sources für Linear Colliders

Estimated Photon and Positron Production

Fig.7:Dependance of photon/positron production on parameter K K. Floettmann, Investigations Toward the Development of Polarized and Unpolarized High Intesity Positron Sources für Linear Colliders $N_{ph tot}$ =(3.56-0.69*K)*K²/ λ_{u} [cm]

	Photons	Positrons
Approx.	1.43*10 ⁶	4.62*10 ⁵
CAIN	1.26*10 ⁶	3.56*10 ⁵

Table 1: Estimated/CAIN-determined photon/positron production

Prospects

- Implementation of collimator in CAIN
- Running simulations with different sets of parameters
- Evaluating positron yield
- Consideration of polarization