

Strategic Helmholtz Alliance "Physics at the Terascale" Kick-off Workshop DESY, 3 – 5 December, 2007

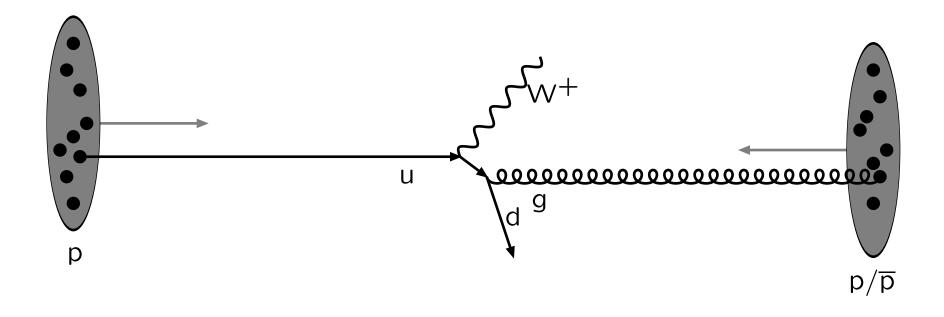
Event Generators: Trends and Needs

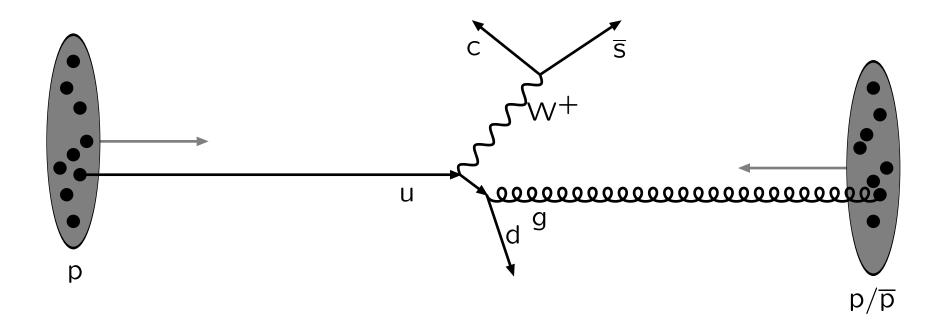
Torbjörn Sjöstrand

CERN/PH and

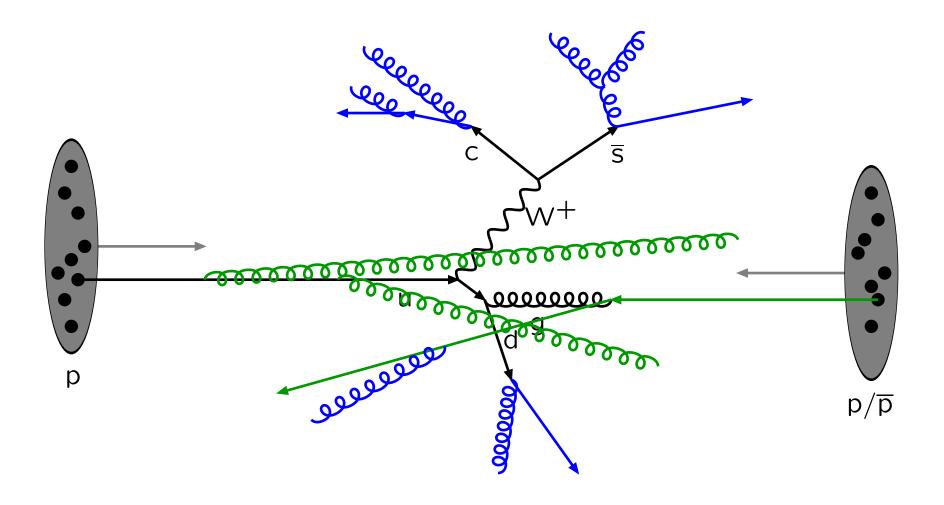
Department of Theoretical Physics, Lund University

Generator Physics Introduction
Generator Overview, Standards and C++ Transition
Hadronization and Multiple Interactions
Parton Showers and Matrix Elements
Summary

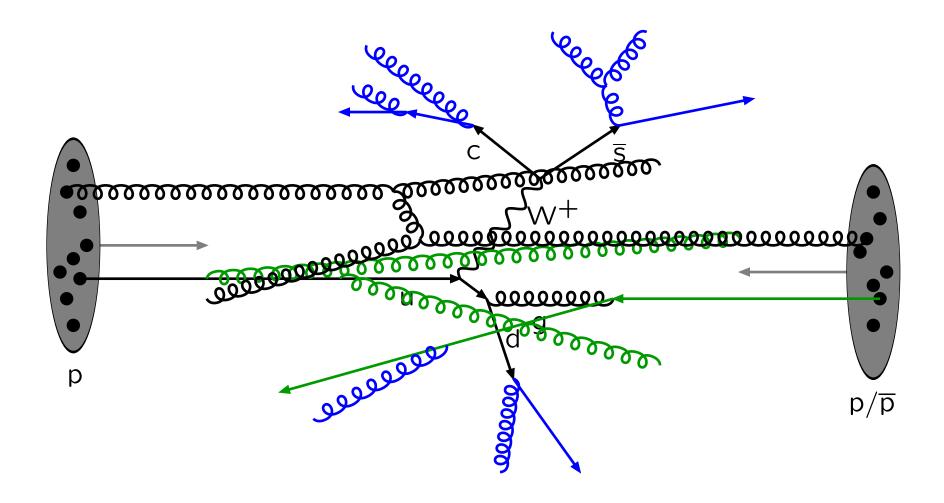

...and then second MC talk by Peter Richardson on Wednesday

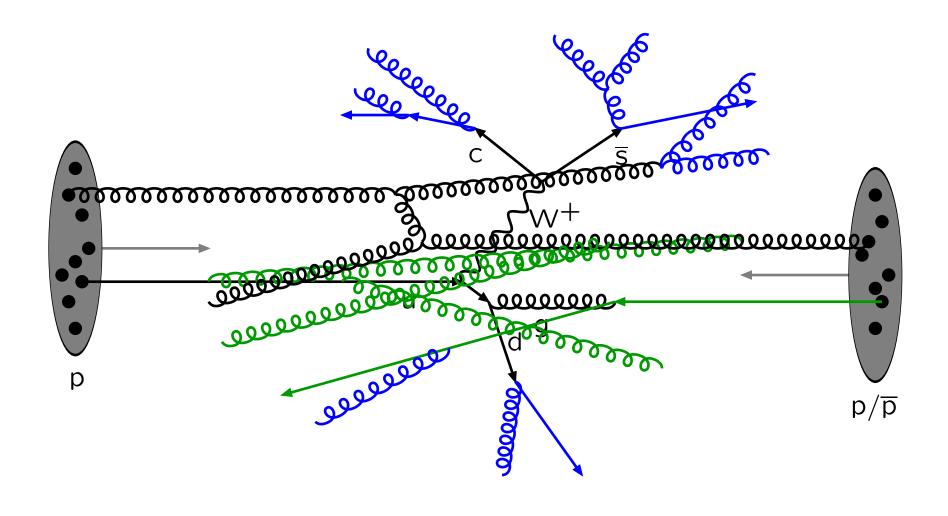

The structure of an event

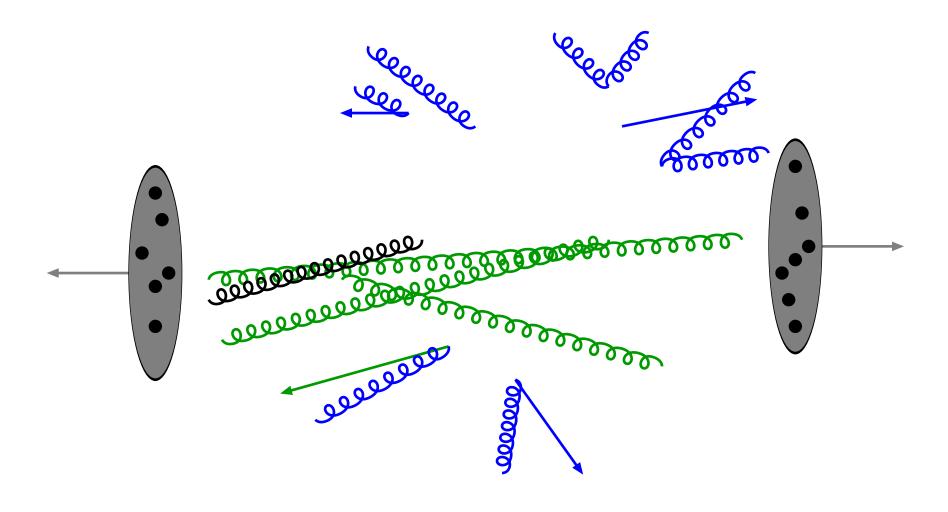

Warning: schematic only, everything simplified, nothing to scale, ...

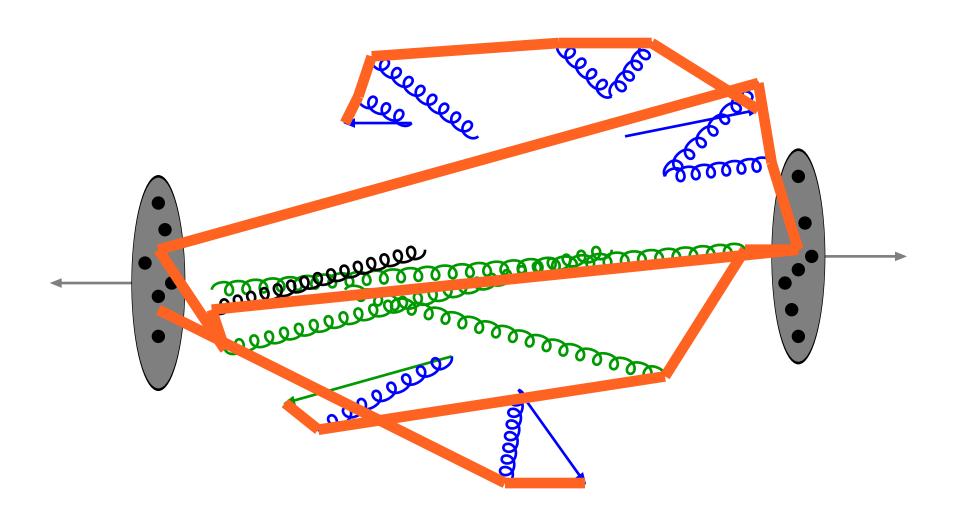


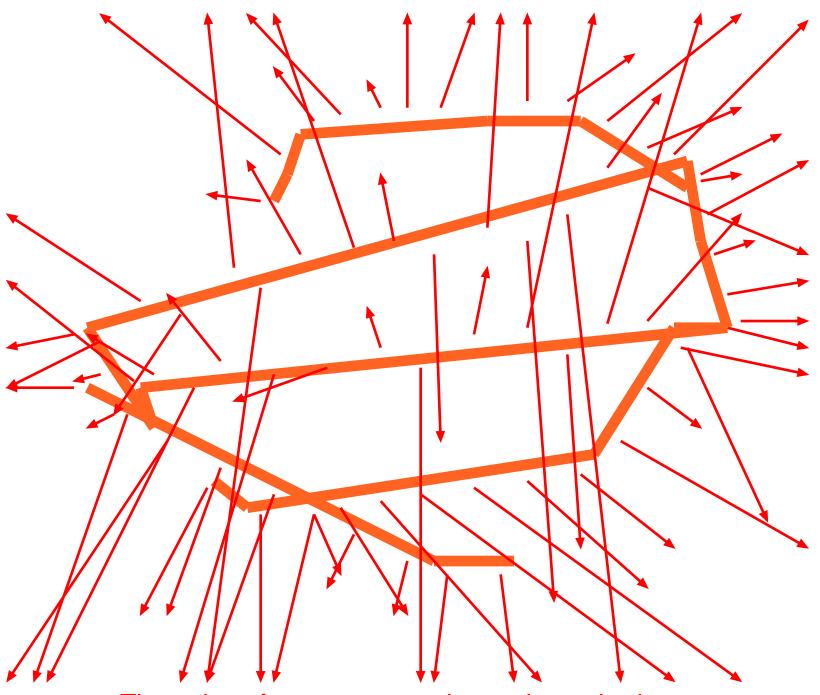
Incoming beams: parton densities

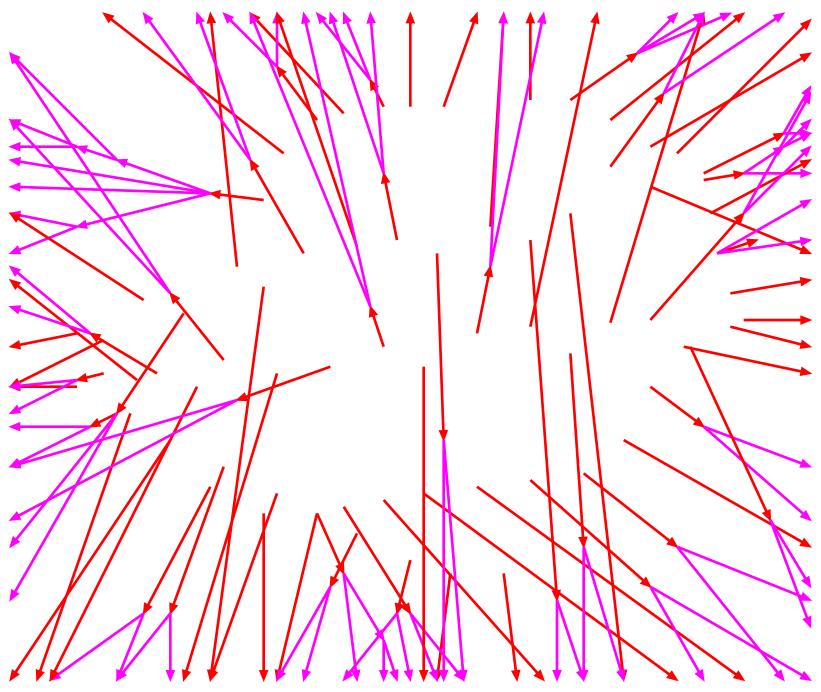


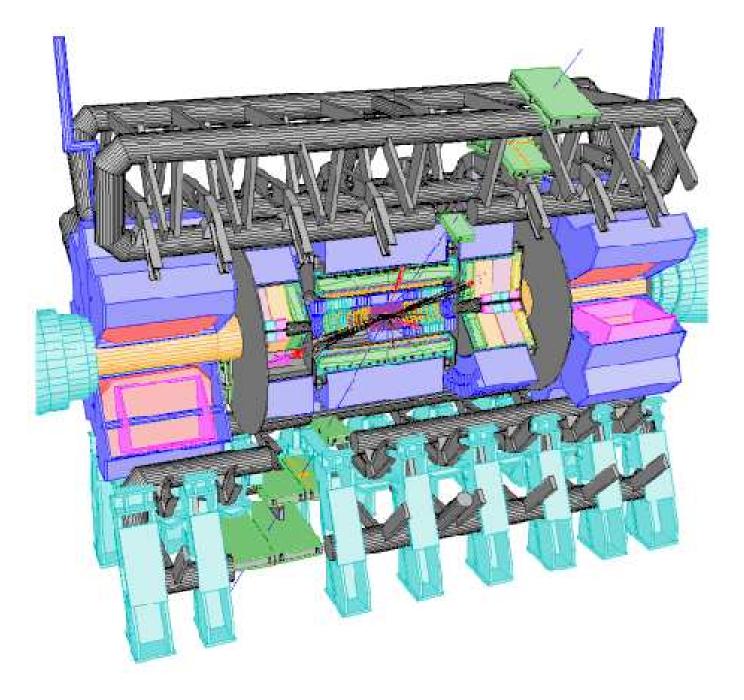





Final-state radiation: timelike parton showers




Beam remnants and other outgoing partons


Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

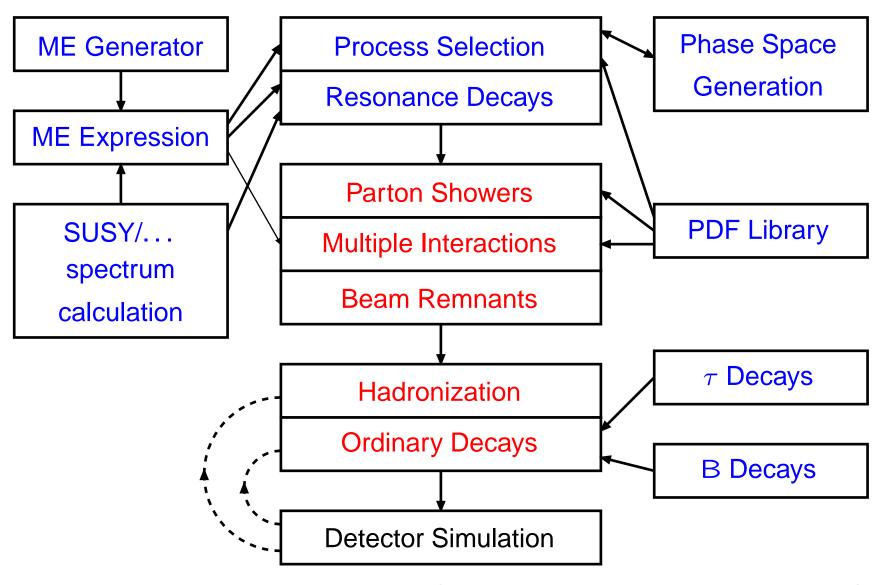
Many hadrons are unstable and decay further

These are the particles that hit the detector

Event Generators: Program Mission

- Allow theoretical and experimental studies of complex multiparticle physics
- Large flexibility in physical quantities that can be addressed
 - Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

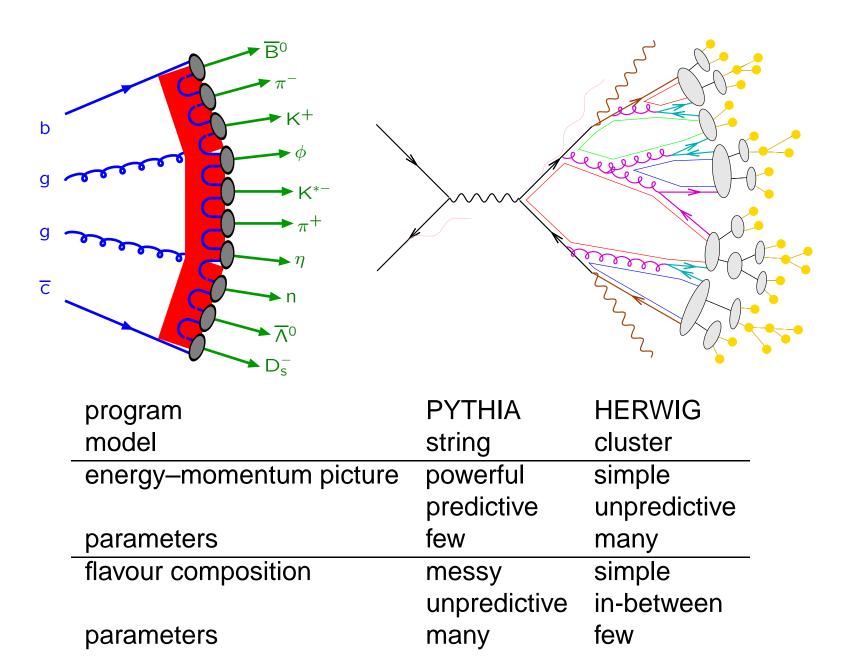

- predict event rates and topologies
 - ⇒ can estimate feasibility
 - simulate possible backgrounds
 - ⇒ can devise analysis strategies
 - study detector requirements
- ⇒ can optimize detector/trigger design
 - study detector imperfections
- ⇒ can evaluate acceptance corrections

Generator Landscape

	General-Purpose	Specialized
Hard Processes		a lot
Resonance Decays	HERWIG	HDECAY,
Parton Showers	PYTHIA	Ariadne, CASCADE,
Underlying Event	SHERPA	PHOJET/DPMJET
Hadronization	ISAJET	none (?)
Ordinary Decays		TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core

The Bigger Picture



need standardized interfaces (and need to make people use them):
PDG ID codes, LHA/LHEF, SUSY LHA, LHAPDF, HEPMC, ...

The C++ Transition

- CERN/LHC policy decision: Fortran not supported, move to C++
- 3 general-purpose generators rose to challenge:
 - SHERPA: new, in C++ from onset, first version 2003, now at 1.0.11
 hallmark: automatic ME generation and matching to showers
 - HERWIG++: first version 2003, first production release 2.1 in Nov hallmark: angular-ordered showers with coherence, spin tracing
 - PYTHIA 8: first draft 2005, first production release 8.1 in Oct hallmark: multiple interactions, string fragmentation
- Message to experimentalists: You asked for it, now you use it!
 - **implement** in your generation frameworks
 - try out complete generation chain, report problems
 - appoint contact persons to funnel interaction with authors
 - plan for a transition period over the next 1 2 years (be forgiving about teething problems)
 - plan for long-time support & tuning to experimental data

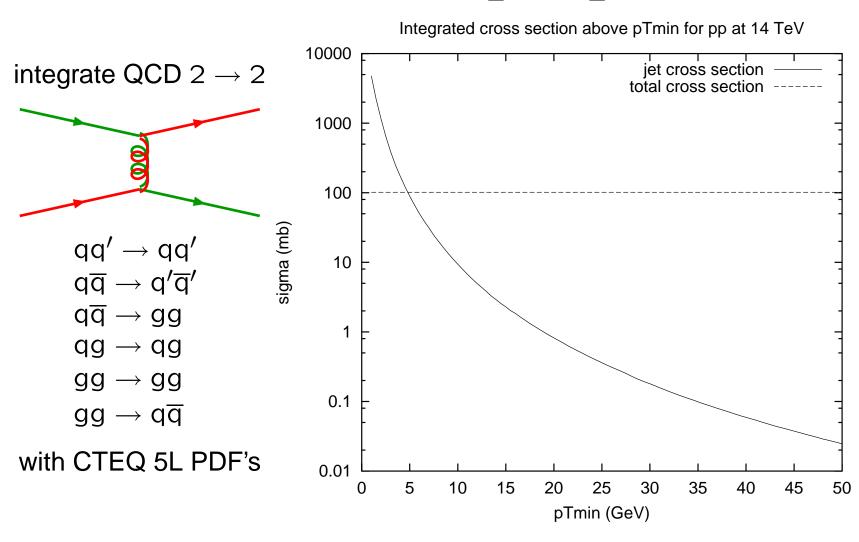
Hadronization Models

Hadronization Issues

- No (promising) new fragmentation frameworks in last 25 years
- String model best bet (?), but too many "materials constants"
 - ★ will lattice QCD one day be able to help?
 - ⋆ mass dependence goes part of the way (UCLA model)
- Cluster model also has evolved towards many parameters
 - ⇒ there is no few-parameter *good* description

Many unsolved issues, especially: multiple interactions \Rightarrow dense-packing of strings \Rightarrow collective effects?

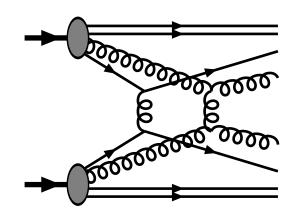
- Higher colour representations (colour ropes)
- Colour reconnections (= colour exchange between q's and g's)?
- Bose–Einstein correlations?
- Partial formation of Quark-Gluon Plasma (QGP)?
- Rescattering of hadrons

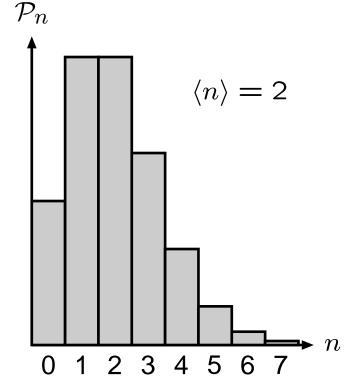

 strangeness content, collective flow?

Action items:

- Full-fledged experimental program, whatever detectors can do e.g. $\Lambda^0 \overline{\Lambda}{}^0 \Rightarrow$ baryon flow to central region
- Models for hadronization in context of (partial) QGP

What is multiple interactions?


Cross section for $2 \to 2$ interactions is dominated by t-channel gluon exchange, so diverges like $d\sigma/dp_{\perp}^2 \approx 1/p_{\perp}^4$ for $p_{\perp} \to 0$.



So $\sigma_{\rm int}(p_{\perp \rm min}) > \sigma_{\rm tot}$ for $p_{\perp \rm min} \lesssim 5$ GeV

Half a solution: many interactions per event

$$\sigma_{ ext{tot}} = \sum_{n=0}^{\infty} \sigma_n$$
 $\sigma_{ ext{int}} = \sum_{n=0}^{\infty} n \, \sigma_n$
 $\sigma_{ ext{int}} > \sigma_{ ext{tot}} \Longleftrightarrow \langle n \rangle > 1$

If interactions occur independently then Poissonian statistics

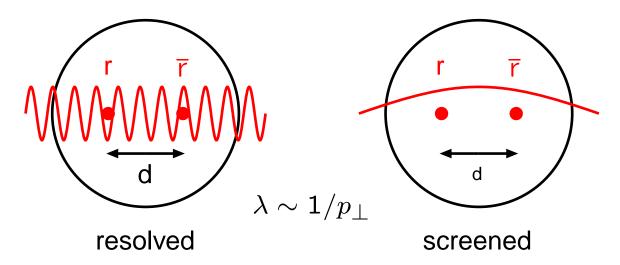
$$\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

but energy–momentum conservation \Rightarrow large n suppressed

Note: $e^{-\langle n \rangle}$ = "virtual corrections"

= "eikonalization" = "unitarity"

= "Sudakov form factor"


Other half of solution:

perturbative QCD not valid at small p_{\perp} since q, g not asymptotic states (confinement!).

Naively breakdown at

$$p_{\perp \rm min} \simeq rac{\hbar}{r_{
m p}} pprox rac{0.2~{
m GeV} \cdot {
m fm}}{0.7~{
m fm}} pprox 0.3~{
m GeV} \simeq \Lambda_{
m QCD}$$

... but better replace r_p by (unknown) colour screening length d in hadron

Multiple Interactions Models

```
nonperturbative picture
                                                      perturbative picture
                                                  multiple hard interactions
       multiple cut Pomerons
           many, p_{\perp} = 0
                                                         few, large p_{\perp}
          ISAJET, DTUJET
                                                         no generators
                            PYTHIA (TS, van Zijl, 1987)
              purely perturbative picture, all the way to p_{\perp} = 0
                  but colour screening factor \approx \left(\frac{p_{\perp}^2}{p_{\perp}^2 + p_{\perp}^2}\right)^2
               with p_{\perp 0} = 2 \text{ GeV (Tevatron)} - 3 \text{ GeV (LHC?)}
                model for minimum-bias and underlying event
                 impact parameter profile ⇒ pedestal effect
PHOJET/DPMJET (Ranft, Engel, ...)
                                            JIMMY (Butterworth, Forshaw, Seymour)
     soft + hard cut Pomerons
                                               model only for underlying event
       eikonalized diffraction
              IVAN (unpublished) (Borozan, Seymour)
```

Multiple Interactions: A New Evolution Equation

	time	evolution	probability
FSR	forwards	$p_{\perp} \searrow 0$	normal & local
ISR	backwards	$p_{\perp} \searrow 0$	conditional
MI	simultaneous	$p_\perp \searrow 0$	conditional

ISR + MI: PDF competition ⇒ interleaving (PYTHIA 6.3)

FSR: previously at end, now also interleaved (PYTHIA 8.1):

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} \ = \ \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\perp}} \right)$$

$$\times \ \exp\left(- \int_{p_{\perp}}^{p_{\perp i-1}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\perp}'} \right) \mathrm{d}p_{\perp}' \right)$$

"resolution evolution"

Monte Carlo: winner takes all

+ many other assumptions/models

Multiple Interactions Outlook

Issues requiring further thought and study:

- Multi-parton PDF's $f_{a_1a_2a_3}...(x_1,Q_1^2,x_2,Q_2^2,x_3,Q_3^2,...)$
- ullet Close-packing in initial state, especially small x
- Impact-parameter picture and (x, b) correlations e.g. large-x partons more central!, valence quarks more central?
- Details of colour-screening mechanism
- Rescattering: one parton scattering several times
- Intertwining: one parton splits in two that scatter separately
- Colour sharing: two FS–IS dipoles become one FS–FS one
- Colour reconnection: required for $\langle p_{\perp} \rangle (n_{\text{charged}})$
- Collective effects (e.g. QGP, cf. Hadronization above)
- Relation to diffraction: eikonalization, multi-gap topologies, . . .

Action items:

- Vigorous experimental program at LHC
- Study energy dependence: RHIC (pp) → Tevatron → LHC
- MI studies have become PYTHIA-centric
 - ⇒ develop & support alternatives, such as PHOJET
- increase contact/exchange with cosmic-ray community (e.g. Engel)

Shower Algorithms (1)

Two main trends: \bullet use p_{\perp} as evolution variable • dipole kinematics = radiator + recoiler Lund string Leningrad antenna (Azimov, Dokshitzer, Khoze, Troyan) NLO ME's Lund dipole (Gustafson) ARIADNE (Lönnblad) Catani-Seymour dipole traditional LDCMC showers Nagy, Soper PYTHIA 6.3, 8.1 *Krauss, Schumann* (→ SHERPA) VINCIA (Giele, Kosower, Skands) Dinsdale, Ternick, Weinzierl (\rightarrow ?) Winter (in preparation)

Shower Algorithms (2)

- Improved angular-ordering in HERWIG++, especially massive quarks
- Quantum showers (Nagy, Soper)
- Soft Collinear Effective Showers (Bauer, Schwartz)
- PHOTOS strategy extended to QCD (Was)
- Constrained showers (Jadach et al.)
- NLO showers (Kato, Munehisa)
- CCFM-based showers for small-x physics:
 LDCMC (Andersson, Gustafson, Lönnblad)
 CASCADE (Jung)
- multi-scale showers showers for resonance decays (to be done)
- ...

Recent explosion in number of shower algorithms and authors! This is healthy; there must not be one unique answer for all. (If only other key topics, like say multiple interactions, were as well provided for)

Further evolution should be supported!

One possible long-term project: a robust and trustworthy NLO shower. Another: a small-x shower encompassing all relevant physics.

Shower Matching: Loops

More loops (NLO, NNLO, ...):

- + improved cross section for rate predictions and precision tests
- negligible improvement for event shapes
- MC@NLO (Frixione, Webber; Nason, Latunde-Dada)
 subtraction of generator-specific counterterm (HERWIG, HERWIG++)
- POWHEG (Nason; Frixione, Oleari, Ridolfi, Latunde-Dada, Gieseke, Webber)
 construct hardest (= highest-p₊) branching with Sudakov:

$$d\sigma = \left(B(v) + V(v) + \int (R(v,r) - C(v,r))d\Phi_r\right) \exp\left(-\int_{p_{\perp}} \frac{R(v,r)}{B(v)}d\Phi_r\right)$$

marries well with $(p_{\perp}$ -ordered) showers*, is more robust than MC@NLO

⇒ NLO programs should be able to produce POWHEG-style output

difference MC@NLO-POWHEG a measure of higher-order uncertainty

- 1) evolve shower in Q^2 with $d\sigma_{q\overline{q}g}^{PS} > d\sigma_{q\overline{q}g}^{ME}$
- 2) weight by $d\sigma_{q\overline{q}g}^{ME}/d\sigma_{q\overline{q}g}^{PS}$ in with veto algorithm $\Rightarrow \exp\left(-\int d\sigma_{q\overline{q}g}^{ME}/\sigma_{q\overline{q}}\right)$
- 3) rescale to $\sigma_{\text{NLO}} = (1 + \alpha_{\text{S}}/\pi) \sigma_{\text{LO}}$

^{*&}quot;POWHEG" first done 1987 for e⁺e⁻ (Bengtsson, TS):

Shower Matching: Legs

More legs:

- + address complicated multiparton topologies ⇒ what you need for searches
- no (systematic) improvement of absolute cross sections

LO ME's are inclusive: $2 \to 2$, $2 \to 3$, $2 \to 4$, ..., doublecount Use Sudakovs to express that $2 \to 2$ should *not* radiate into $2 \to 3$, etc., \Rightarrow exclusive picture, no doublecounting

Sudakov = all-orders estimate of virtual corrections ⇒ some freedom

- CKKW (Catani, Krauss, Kuhn, Webber): analytical Sudakovs
- L-CKKW (Lönnblad; Lavesson): use trial showers (= as for real emissions), so "optimal" match of Sudakovs ⇒ my favourite
- MLM (Mangano): try to match final jets to initial partons and reject if fails with room for refinements

Another possible long-term project (VINCIA vision): develop a shower that does matching both to loop(s) and legs Likely more useful than a NLO shower without multi-leg capability

Showers and Parton Distributions

Trends in recent years:

- NLO fits only
- error PDF's (for NLO)

Folklore: shower is LO, then \otimes LO or \otimes NLO PDF's \Rightarrow LO either way so *no need for LO fits*

However:

- NLO PDF's don't have to be positive definite, only $\sigma \otimes PDF$
- σ_{NLO} contain +ive $\ln(1/x)$ terms \Rightarrow PDF_{NLO} reduced at small x $\Rightarrow \sigma_{\text{LO}} \otimes \text{PDF}_{\text{NLO}}$ skewed, often worse than $\sigma_{\text{LO}} \otimes \text{PDF}_{\text{LO}}$

Solutions, "turning the tide":

- Improved "effective" LO PDF's (Thorne, Sherstnev)
 e.g. do not conserve momentum exactly (~ K factor in gluon sector)
- **PDF4MC** (Jung et al.) tune PDF's for agreement with data ($d\sigma_{jet}$, $d\sigma_{W/Z}$, ...) as simulated by a specific generator

Matrix-Element Generators

Two main classes for LO generators:

- Generic: MadGraph, CompHep/CalcHep, . . .
- Preconfigured: AlpGen, Phase, . . .

see e.g. http://www.cedar.ac.uk/hepcode/for longer list

and http://www.ippp.dur.ac.uk/montecarlo/BSM/ for BSM

MadGraph very useful, but should be extended to cover more BSM

Rather splintered picture for NLO:

- MCFM (& many others): more integrator than generator
- MC@NLO: tied to HERWIG, limited number of processes

Fast way forward: NLO programs ⇒ POWHEG-style output (see above)

Ultimate goal, in MadGraph spirit:

user-friendly machinery for automatized NLO calculations

Summary

Obviously no claim for complete coverage or objectivity, so apologies if your favourite project was not mentioned.

- Support new generation of C++-based generators
- Embrace standards for interoperability
- Start full-fledged program of hadronization studies
- Vigorous multiple-interactions program absolutely crucial
 - experimental and theoretical
- Continue current development of shower algorithms
 - ★ towards matching to more loops and legs (simultaneously?)
 - ⋆ ultimately towards a complete NLO shower
- Develop a user-friendly machinery for automatized NLO calculations
 ... in spirit of POWHEG approach
- Provide generator-friendly PDF sets

Final warning: one-shot efforts often lead to nothing!
Good documentation and long-term support of code is the key.
This must be allowed to cost.