

Kick-Off Workshop of the Helmholtz Alliance DESY Hamburg 4th December 2007

Martin Goebel Universität Hamburg

- What / Who is Gfitter?
- Why a new fit of Standard Model?
- Implementation
- Comparison with ZFitter
- Results
 - Higgs mass estimate
 - Treatment of theoretical uncertainties
 - Goodness of global fit
 - p-value of the SM at different Higgs masses
 - Two-Dimensional Scans
- Summary

- Gfitter A Generic Fitter Project for HEP Model Testing http://cern.ch/Gfitter
- It is built upon ROOT
- Organized in one core statistic/fitting package, and physics plugin packages
 - SM, Two Higgs Doublet, SUSY, etc.
- Dynamic parameter caching
 - Only Recalculation of parameters when needed
- Goal: Perform fully frequentist analysis
 - Present: goodness of fit by toy-analysis
- Transparent fitting and steering card interpretation
 - Usage of XML format

- In steering card only one type of parameter
 - The chosen actions depend on whether the parameter has an associated prediction or not

- This makes Gfitter a flexible tool
- We think it's very user-friendly

Who is Gfitter?

Henning Flächer (CERN)

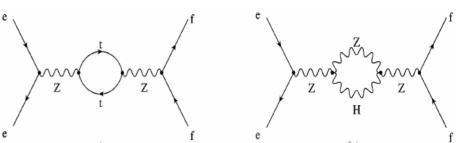
Martin Goebel (Uni HH / DESY)

Johannes Haller (Uni HH / DESY)

Andreas Hoecker (CERN)

Klaus Mönig (DESY)

Joerg Stelzer (CERN)



- Testing and improving of framework with well-known theory
- Existing SM packages written in Fortran
 - Involved usage
 - Hard to change something or update the code
- Physics aim: Determination of observables which don't match well to the SM (e.g. when the Higgs is measured)
- Usage of EW fit: SM extensions, e.g. 2 Higgs doublet models

UH

- <u>Idea</u>: Radiative corrections give precise predictions for ew observables
- <u>Task</u>: Computing all ew observables with five input parameters
- We use the *on-mass-shell* (OMS) scheme (like Zfitter)
 - Complete two loop corrections incl. the known higher order QCD and QED for most of the observables
 - Quark masses and can be varied in the Fit, too!

5 free parameters in the fit:

$$\Delta \alpha_{had}^{(5)}(M_Z), \alpha_S(M_Z), M_Z, m_t, M_H$$

All LEP precision measurements:

$$M_{Z} A_{f} A_{FB}^{0,f} R_{f}^{0} \sigma_{had}^{0} \Gamma_{Z} \sin^{2} \Theta_{eff}^{lept}$$

SLD measurement of the A_{lep} leptonic asymmetry

Tevatron/LEP world averages: $M = \Gamma m$

$$W_W = W_W = W_{top}$$

QED and QCD coupling constants at Z pole

$$\Delta \alpha_{had}^{(5)}(M_Z) \qquad \qquad \alpha_s(M_Z)$$

19 observables – 5 free parameters = 14 dof

- Compared in detail the calculations of Zfitter and Gfitter
- Reproduction of Zfitter results!
- Small differences completely understood
 - Due to a different treatment of running QCD effects
 - Implementation of NNLO order RGE for strong coupling constant and running quark masses

Test with identical input, i.e.

$$\Delta \alpha_{had}^{(5)}(M_Z) = 0.02758 \pm 0.00035 \text{ [BP'05]}$$

Gfitter: $\chi^2_{\rm min} = 18.0$

 $M_{H} = 76.9 + 33.3 - 24.5 \text{ GeV}$

Zfitter:
$$\chi^2_{min} = 18.0$$

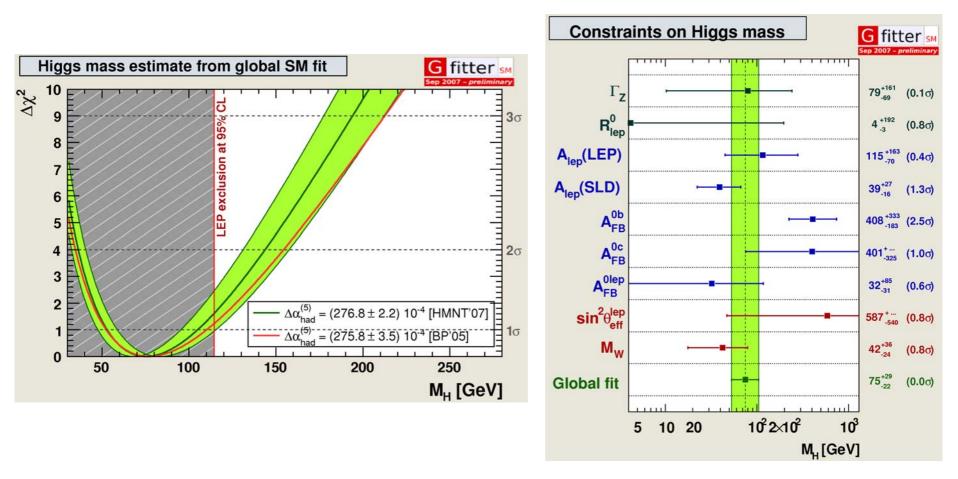
 $M_H = 76.7 + 33.2 - 24.5$ GeV

We use the following best estimate for the contribution to α_{QED} at M_Z: $\Delta \alpha_{had}^{(5)}(M_Z) = 0.02768 \pm 0.00022 \pm 0.000022 \cdot (0.118 - \alpha_s(M_Z))^1$ [HMNT'07]

Results for fit parameters:

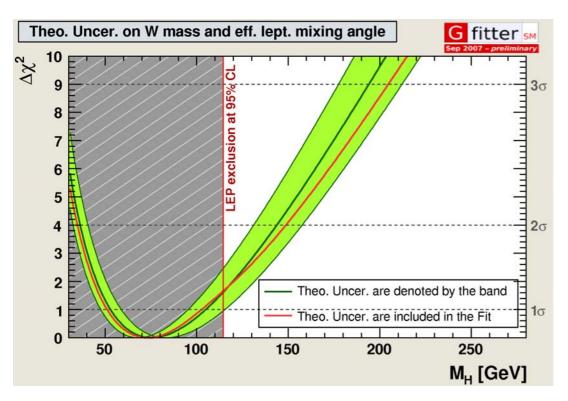
Parameter	Fit Value	Uncertainties			
Name		$\pm 1\sigma$ (sym.)	-1σ	$+1\sigma$	
M_H	75.2	25.7	29.7	-22.4	
$\alpha_s(M_Z)$	0.1183	0.0020	0.0020	-0.0020	
$\Delta \alpha_{had}^5(M_Z)$	0.02772	0.00022	0.00022	-0.00022	
M_Z	91.1875	0.0021	0.0021	-0.0021	
m_t	171.28	1.79	1.80	-1.79	
\bar{m}_c	1.25	0.09	0.09	-0.09	
\bar{m}_b	4.20	0.07	0.07	-0.07	

$$\chi^2_{\rm min}$$
 / dof = 17.9 / 14


$$M_H = 75.1 + 29.6 - 22.4 \text{ GeV}$$

Correlation matrix:

	M_H	$\alpha_s(M_Z)$	$\Delta \alpha_{had}^5(M_Z)$	M_Z	m_t	\bar{m}_c	\bar{m}_b
M_H	1	0.052	(-0.377)	0.098	0.426	-0.001	-0.006
$\alpha_s(M_Z)$		1	0.014	-0.015	0.020	0.008	0.032
$\Delta \alpha_{had}^5(M_Z)$			1	-0.002	-0.006	0.000	-0.001
M_Z				1	-0.025	0.000	0.001
m_t					1	0.000	-0.004
\bar{m}_c						1	0.000
\bar{m}_b							1



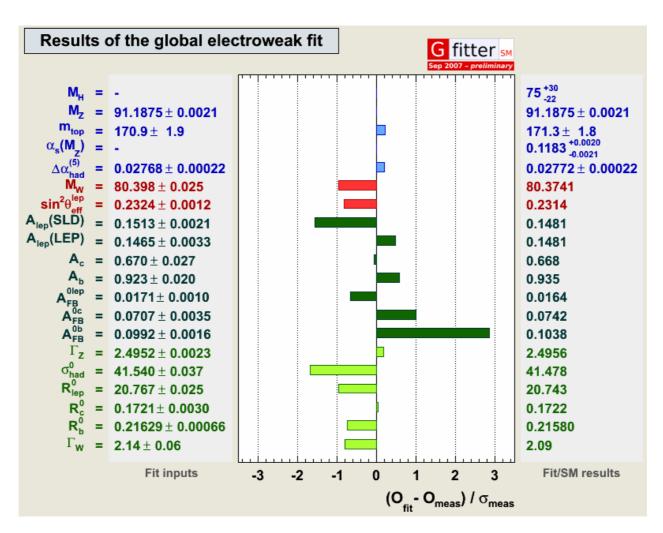
Band vs. including theo. uncertainties

Uncertainties for Theory-Prediction (two main sources)

 $M_W \pm \Delta M_W$ (theo)

Old Treatment:

Band was done by **shifting** the predictions by these uncertainties **redoing** the scan and **choosing** the worst cases


New Treatment: (à la RFit) If measurement

- within theory uncertainty: **no contribution** to χ^2 .
- <u>outside theory uncertainty:</u> χ² determined by distance between measurement and prediction ± uncertainty

Fit Results

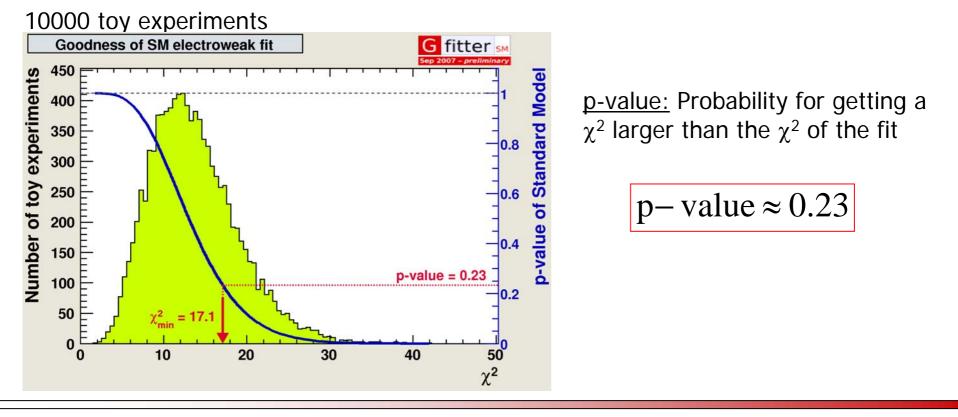
Results without theory uncertainties

Martin Goebel

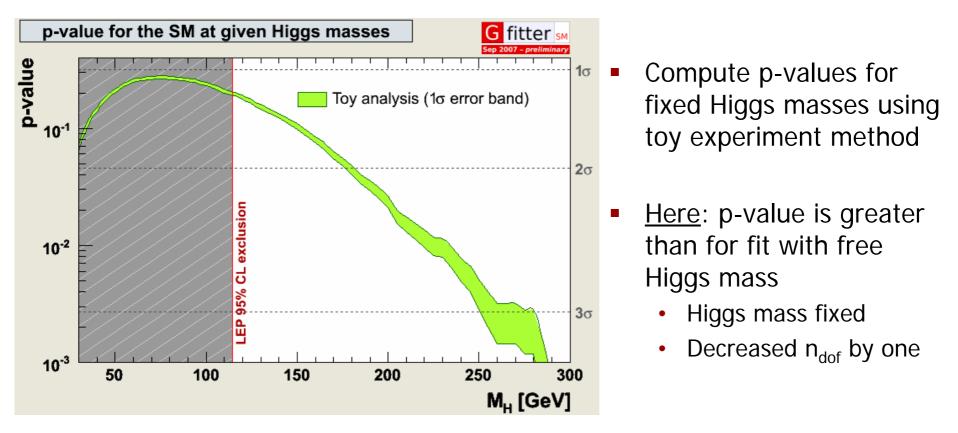
Electroweak Fits using Gfitter

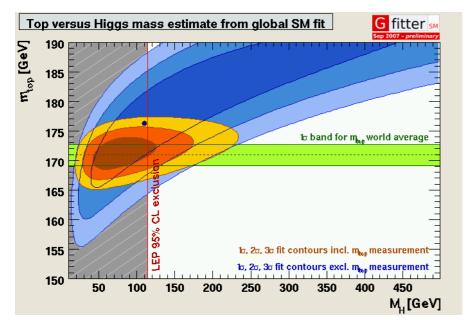
Results for some Observables

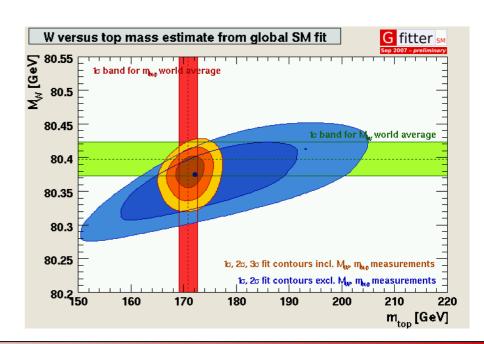
Martin Goebel


Results including theory uncertainties

by using toy analysis

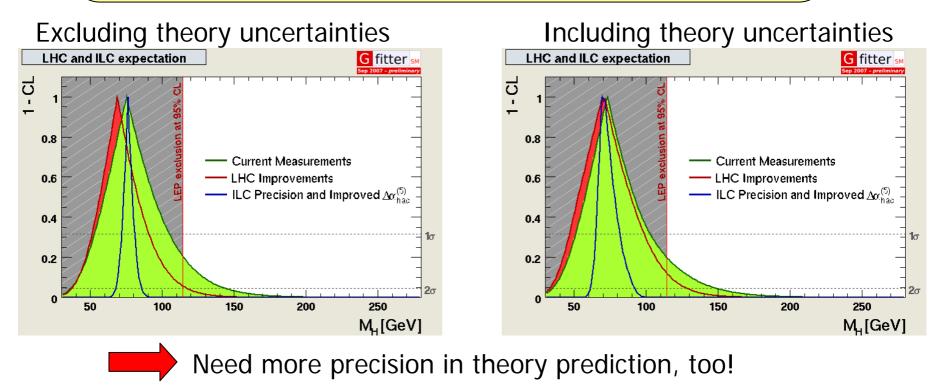

- Execute the SM fit
- Generate toy sample by random sampling from Gaussian distributions around initial fit results (Correlations are taken into account)
- Refit with new values for observables, achieve a new χ^2


What is the p-value for electroweak fit for given Higgs masses (assuming negligible errors)?


Two-Dimensional Scans

- Current values agree with the Fit Results
- However need more precision on W and top mass

- When top mass excluded: allowed band rather big
- Good constraint if top mass is included



Precision from LHC and ILC

(<u>Current</u>	<u>LHC</u>	ILC
	$\delta(m_{top}) = 1.8 GeV$	$\delta(m_{top}) = 1.0 GeV$	$\delta(m_{top}) = 0.1 GeV$
	$\delta(M_w) = 25 MeV$	$\delta(M_w) = 15 MeV$	$\delta(M_w) = 6MeV$
	$\delta(\Delta \alpha_{had}^{(5)}) = 0.00022$	$\delta(\Delta \alpha_{had}^{(5)}) = 0.00022$	$\delta(\Delta \alpha_{had}^{(5)}) = 0.00005$
	$\delta(\sin^2 \Theta_{eff}^{lept}) = 0.00017$	$\delta(\sin^2 \Theta_{eff}^{lept}) = 0.00017$	$\delta(\sin^2 \Theta_{eff}^{lept}) = 0.000013$

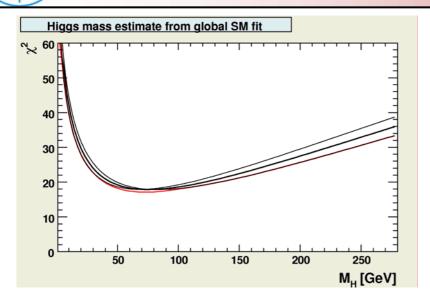
Electroweak Fits using Gfitter

Summary

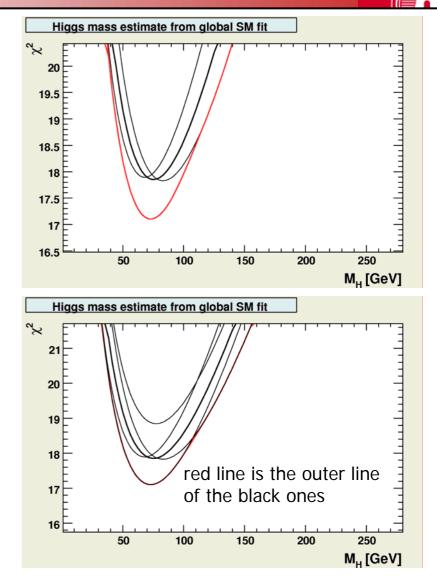
 \rightarrow fast

- Gfitter is a generic Fitting Tool for HEP analysis testing
 - user friendly, C++, ROOT based
 - RFit treatment of theoretical uncertainties
 - a lot of analysis tools provided (Toy tests, etc.)
 - Scanning of all parameters (w and w/o theory prediction) \rightarrow flexible
 - caching of theory predictions
- The SM package of Gfitter
 - Exact reproduction of Zfitter results
 - Results: M_H<150 GeV at 95% CL
 - p-value of SM = 0.23
 - Improvement by LHC and ILC
- Next steps:
 - Include LEP Higgs Search
 - Two Higgs Doublet Models, MSSM
- Additional information to Gfitter and SM fit can be found on:

http://cern.ch/Gfitter



Additional Information


Martin Goebel

Treatment of theo. uncertainties

<u>NEW:</u> If prediction is within theoryuncertainty, no contribution to $\chi 2$. If not, $\chi 2$ determined by the distance between measurement and prediction \pm uncertainty

<u>OLD:</u> Predictions are shifted by the theoretical errors, many possibilities (black lines)

