Terascale Kick-Off Meeting, Hamburg 2007

Z Boson Production and Properties at LHC

Matthias Schott*
on behalf of the
ATLAS Collaborations

Z Boson Production at the LHC

- Large Hadron Collider
- Proton Proton Collisions
- $\sqrt{ } \mathrm{s}=14 \mathrm{TeV}$
- Low Luminosity Phase:

$$
\mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

- Z boson production via Drell-Yan process
- Theoretical cross-section calculation available for NNLO

$$
\sigma\left(p p \rightarrow Z / \gamma^{*} \rightarrow \mu \mu\right)=1.972 \pm 0.019 n b
$$

- Initial Phase of LHC:
$\int \mathrm{Ldt}=100 \mathrm{pb}^{-1}(\approx 100.000 \mathrm{Z} \rightarrow \mu \mu)$
- 200.000 $\mathrm{Z} \rightarrow \mu \mu$ events are expected per day during low luminosity

Z Boson Production at the LHC

Physics Measurements

- Cross-Sections
- PDF Constraints
- Forward Backward Asymmetries
- Sensitivity to exotic physics processes

Detector Calibration

- Detector Efficiencies
- Reconstruction
- Trigger
- Resolution
- Alignment
- In this talk:
- Cross Section Measurement in the muon decay channel for the initial phase

$$
\sigma\left(p p \rightarrow Z / \gamma^{*}+X \rightarrow \mu \mu\right)=\frac{\mathrm{N}_{\text {Candidates }}\left(1-\mathrm{f}_{\text {Background }}\right)}{\varepsilon_{\text {totala } \int} L d t}
$$

- Differential Cross-Section Measurement

Signal Selection

- Background Processes
- QCD Processes $b \bar{b} \rightarrow \mu \mu+X$
- $W+j e t s \rightarrow \mu v+j e t s$
- $Z \rightarrow \tau \tau \rightarrow \mu v+\mu v$
- $t \bar{t} \rightarrow W b+W b \rightarrow \mu v+j e t+\mu v+j e t$
- Background Uncertainty <0.002

ATLAS Selection for first data

- Two reconstructed muon tracks
- Opposite Charge
- 191.2 GeV-M $M_{\mu \mu} \mathrm{L} 20 \mathrm{GeV}$
- $\mathrm{p}_{\mathrm{T}}{ }^{1}>20 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}^{2}>20 \mathrm{GeV}$
- Muon isolation requirements
- $|\eta|<2.5$

Background Estimation from Data

- Estimation of W background
- Assumption

$$
P_{3 \mu}(Z \rightarrow \mu \mu) \approx P_{2 \mu}(W \rightarrow \mu v)
$$

- $\mathrm{P}_{3 \mu}(Z \rightarrow \mu \mu)$: Probability for 3 candidate muons passing the selection cuts in $Z \rightarrow \mu \mu$.
- Estimation of QCD background
- Select sub-sample in data which is dominated by QCD-events, e.g. 2 non-isolated muons
- Use this sub-sample to estimate the QCD background with full selection cuts
- Other background processes are well understood and can be estimated with Monte Carlo.

Background contribution (ATLAS)

- $\mathrm{f}_{\mathrm{bb}} \approx 0.002 \pm 0.002$ (sys)
- $f_{w} \approx 0.002 \pm 0.001$ (sys)
- $\mathrm{f}_{\mathrm{tt}} \approx 0.0043 \pm 0.001$ (sys)

In Situ Determination of Detector Response

- Efficiency determination in data
- 'Tag and Probe’ method
- Limitations: 'tag' and 'probe' correlations, background processes, Φ-symmetric inefficiencies
- Determination of detector resolutions
- Folding the Monte Carlo predicted resolution by a smearing function to reproduce the measured Z boson resonance curve

Expected precision

- $\Delta \varepsilon_{\text {Tracking }} \approx 0.2-0.5 \%$
- $\Delta \varepsilon_{\text {Trigger }} \approx 0.2 \%$
- momentum scale to few per mille

Systematic Uncertainties

- Systematics due contribution of tag \& probe
- Dominating contribution
- Systematics due to determination of detector resolutions
- Further Experimental Systematic Uncertainties
- Misalignment, magnetic field knowledge, collision point uncertainty, pile-up effects, underlying events
- An overall systematic uncertainty of less than 0.35\%
- Theoretical Systematic Uncertainties
- PDF choice: $\approx 0.9 \%$
- Initial state radiation: $\boldsymbol{\approx 0 . 2 \%}$

Differential Cross Section

- The PDF acceptance uncertainties on the total cross section measurement are an artefact of measuring the crosssection inclusively
- Study also the differential cross section with $\int \mathrm{Ldt}=100 \mathrm{pb}^{-1}$
- Possibility to study dynamics of QCD and PDFs
- E.g.: A possible first observation of x-broadening effect in hadron collisions.
- Some theories (Phys.Rev. D72:033015) predict a broadening of the transverse momentum spectra of the Z boson at small x (inspired by
 HERA data)

Iterative bin-by-bin correction

- What do we have so far:
- Reconstructed momentum distribution of Z bosons (determined by the momenta of the two reconstructed muons)
- But: The real distribution differs significantly from the measured distribution due to
- detector efficiencies: not all muons are reconstructed
- detector resolution: The measured momentum is not the true momentum
- signal selection

Iterative bin-by-bin correction

- We assume for now: We know our detector perfectly
- Determine the efficiency for each p_{T}-bin of the Z boson to correct the measured distribution, e.g. for $5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<10 \mathrm{GeV}$
- N_{G} : Number of true Z bosons generated by Monte Carlo in this region
- N_{R} : Number of reconstructed Z bosons in this region (again in Monte Carlo)
- N_{M} : Number of measured Z bosons in this region (this time in data)
$\bullet \rightarrow N_{M} \times\left(N_{G} / N_{R}\right)$ is the number we want to know
- Problem: Even if we know all detector effects, we do not know the underlying real p_{T} distribution

Iterative bin-by-bin correction

- If the predicted Monte Carlo distribution differs from measured distribution then this is due to a wrong assumption in the physics model (i.e. the assumed p_{T} distribution of the Z Boson)
- Assumption: We know our detector perfectly \rightarrow the detector physics is simulated correctly
- Idea: Vary the assumed distribution until the measured and the Monte Carlo predicted distribution coincide
- Done by an iterative procedure called bin-by-bin correction
$0 \rightarrow$ Now we have the determined the truth Z boson p_{T} distribution from data!
- Statistical uncertainties are expected to dominate during initial phase

Measurement of the X-Broadening effect

- Naive approach: Just compare the predicted distribution of different models with the measurement
- Problem: Many unknown unknowns, e.g. detector effects which have been forgotten
- Developed approach (little bit less naive)
- The model introduces an xdependence on the p_{T} distribution
- The rapitity of the Z boson depends also on x
- The rapitity can be determined by the angles of the reconstructed Z bosons
- \rightarrow Measure the maximum-position of the Z Boson distribution for various rapidity ranges

Conclusion and Outlook

- The Z boson will be produced with extremely high statistics
- Excellent (online) calibration channel for the muon systems and the electromagnetic calorimeters
- The p_{T} and rapidity distribution of the Z boson will open new possibilities to constrain the PDF functions
- Measurement of the forward backward asymmetry possible
- Initial Phase of LHC
- Cross section measurement is expected to be already dominated by theoretical uncertainties
- Independent CMS and ATLAS studies give similar expected precision
- Possible cross-check of measured integrated luminosity
- We might even have first constraints on PDF effects

