Terascale Kick-Off Meeting, Hamburg 2007

Z Boson Production and Properties at LHC

Matthias Schott* on behalf of the ATLAS Collaborations

*Matthias.Schott@cern.ch ATLAS Experiment LMU Munich, Germany

Z Boson Production at the LHC

- Large Hadron Collider
 - Proton Proton Collisions
 - √ s = 14 TeV
 - Low Luminosity Phase: L = 10³³ cm⁻²s⁻¹
- Z boson production via Drell-Yan process
- Theoretical cross-section calculation available for NNLO

 $\sigma(pp \to Z/\gamma^* \to \mu\mu) = 1.972 \pm 0.019nb$

- Initial Phase of LHC:
 ∫ Ldt=100pb⁻¹ (≈ 100.000 Z→µµ)
- Output Series 200.000 Z→µµ events are expected per day during low luminosity

Z Boson Production at the LHC

Physics Measurements

- Cross-Sections
- PDF Constraints
- Forward Backward Asymmetries
- Sensitivity to exotic physics processes

Detector Calibration

Detector Efficiencies
Reconstruction
Trigger
Resolution
Alignment

In this talk:

Cross Section Measurement in the muon decay channel for the initial phase

$$\sigma(pp \rightarrow Z/\gamma^* + X \rightarrow \mu\mu) = \frac{N_{\text{Candidates}}(1 - f_{\text{Background}})}{\varepsilon_{\text{total}} \int Ldt}$$

Differential Cross-Section Measurement

Signal Selection

Background Processes

- QCD Processes $b\overline{b} \rightarrow \mu\mu + X$
- $W + jets \rightarrow \mu v + jets$
- $Z \rightarrow \tau \tau \rightarrow \mu \upsilon + \mu \upsilon$
- $t\bar{t} \rightarrow Wb + Wb \rightarrow \mu \upsilon + jet + \mu \upsilon + jet$
- Background Uncertainty < 0.002</p>

Background Estimation from Data

- Estimation of W background
 - Assumption

$$P_{3\mu}(Z \rightarrow \mu \mu) \approx P_{2\mu}(W \rightarrow \mu v)$$

- P_{3µ}(Z→µµ): Probability for 3 candidate muons passing the selection cuts in Z→µµ.
- Estimation of QCD background
 - Select sub-sample in data which is dominated by QCD-events, e.g. 2 non-isolated muons
 - Use this sub-sample to estimate the QCD background with full selection cuts
- Other background processes are well understood and can be estimated with Monte Carlo.

In Situ Determination of Detector Response

- Efficiency determination in data
 - 'Tag and Probe' method
 - Limitations: 'tag' and 'probe' correlations, background processes, Φ-symmetric inefficiencies
- Determination of detector resolutions
 - Folding the Monte Carlo predicted resolution by a smearing function to reproduce the measured Z boson resonance curve

Systematic Uncertainties

- Systematics due contribution of tag & probe
 - Dominating contribution
- Systematics due to determination of detector resolutions
- Further Experimental Systematic
 Uncertainties
 - Misalignment, magnetic field knowledge, collision point uncertainty, pile-up effects, underlying events
 - An overall systematic uncertainty of less than 0.35%
- Theoretical Systematic Uncertainties
 - PDF choice: **≈ 0.9%**
 - Initial state radiation: ≈ 0.2%

Expected Precision $\int Ldt = 100 \text{pb}^{-1}$ $\frac{\Delta\sigma}{\sigma}(pp \rightarrow Z/\gamma^* + X \rightarrow \mu\mu) = 0.004 \text{ (stat)} \pm 0.01 \text{ (ex.sys)} \pm 0.01 \text{ (th.sys)} \pm 0.1 \text{ (lumi)}$

Differential Cross Section

- The PDF acceptance uncertainties on the total cross section measurement are an artefact of measuring the crosssection inclusively
- Study also the differential cross section with ∫ Ldt=100pb⁻¹
 - Possibility to study dynamics of QCD and PDFs
 - E.g.: A possible first observation of x-broadening effect in hadron collisions.
 - Some theories (Phys.Rev. D72:033015) predict a broadening of the transverse momentum spectra of the Z boson at small x (inspired by HERA data)

Iterative bin-by-bin correction

- What do we have so far:
 - Reconstructed momentum distribution of Z bosons (determined by the momenta of the two reconstructed muons)
 - But: The real distribution differs significantly from the measured distribution due to
 - detector efficiencies: not all muons are reconstructed
 - detector resolution: The measured momentum is not the true momentum
 - signal selection

Iterative bin-by-bin correction

- We assume for now: We know our detector perfectly
- Determine the efficiency for each p_T -bin of the Z boson to correct the measured distribution, e.g. for 5GeV < p_T < 10GeV
 - N_G: Number of true Z bosons generated by Monte Carlo in this region
 - N_R : Number of reconstructed Z bosons in this region (again in Monte Carlo)
 - N_M: Number of measured Z bosons in this region (this time in data)
 - Solution → N_M × (N_G/N_R) is the number we want to know
- Problem: Even if we know all detector effects, we do not know the underlying real p_T distribution

Iterative bin-by-bin correction

- If the predicted Monte Carlo distribution $5^{\circ}_{0.07}$ differs from measured distribution then this is due to a wrong assumption in the physics $5^{\circ}_{0.06}$ due to a wrong assumption in the physics $5^{\circ}_{0.05}$ model (i.e. the assumed p_T distribution of the $2^{\circ}_{0.04}$ distribution distribution of the $2^{\circ}_{0.04}$ distribution distri
 - Assumption: We know our detector perfectly
 the detector physics is simulated correctly
- Idea: Vary the assumed distribution until the measured and the Monte Carlo predicted distribution coincide
 - Done by an iterative procedure called bin-by-bin correction
- Solution → Now we have the determined the truth Z boson p_T distribution from data!
- Statistical uncertainties are expected to dominate during initial phase

Total Cross Section

Signal Selection

Introduction

80

60

40

Conclusion

20

0

100

120

p^{*T*}_{*7*} [GeV]

140

Measurement of the X-Broadening effect

- Naive approach: Just compare the predicted distribution of different models with the measurement
 - Problem: Many unknown unknowns, e.g. detector effects which have been forgotten
- Developed approach (little bit less naive)
 - The model introduces an x-dependence on the p_T distribution
 - The rapitity of the Z boson depends also on x
 - The rapitity can be determined by the angles of the reconstructed Z bosons
 - Measure the maximum-position of the Z Boson distribution for various rapidity ranges

Conclusion and Outlook

The Z boson will be produced with extremely high statistics

- Excellent (online) calibration channel for the muon systems and the electromagnetic calorimeters
- The p_T and rapidity distribution of the Z boson will open new possibilities to constrain the PDF functions
- Measurement of the forward backward asymmetry possible

Initial Phase of LHC

- Cross section measurement is expected to be already dominated by theoretical uncertainties
- Independent CMS and ATLAS studies give similar expected precision
- Possible cross-check of measured integrated luminosity
- We might even have first constraints on PDF effects