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A Bit About Me

I’'m an experimental particle physicist

« | work on high-energy physics

« | work mostly on the CMS experiment at the LHC
e Also on the FCC and the CODEX-b experiment
DESY staff member

I’'m interested in searches for new phenomena,
particularly long-lived particles

Really happy to be here! Hope you’re having fun and
learning a lot :)

Interrupt me at any time and ask questions!



My Biography

Bachelors degree from University of Pennsylvania (1)
o Sept. 2004 - May 2008

PhD in physics from Brown University (2)

e Sept. 2008 - Nov. 2015

o Earned a Masters in Physics by 2010

o Thesis: “A Search for Delayed Muons in the CMS Experiment”, Nov. 2015

Postdoctoral researcher at the Ohio State University (3) (based at CERN (4))
e Dec. 2015 - Sept 2020 {/\ K?nngi:l%dm -

Ireland 5.

Germany

Denmark

Pola

Research fellow at CERN (4)
e Oct. 2020 - Oct. 2022

France
Staff (tenure-track) at DESY (5) o =y S
« As of Nov. 1, 2022 &

Portug(al



What is everything made of?

The Standard Model (SM)

Highly successful theory of
fundamental particle interactions

Quarks @ Leotons @ rorce particies

Standard particles



What is everything made of?

The Standard Model (SM) However, there are still many

Highly successful theory of outstanding questions, e.g.:

fundamental particle interactions What is dark matter?

1E 0657-56 Bullet cluster

Gas (X-rays)

Standard particles

Chandra 0.5 Msec image




What is everything made of?

Many theories beyond the

SM (BSM):

SUPERSYMMETRY

Standard particles

=2 O
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2

SUSY particles

However, there are still many
outstanding questions, e.g.:

What is dark matter?

1E 0657-56 Bullet cluster

Gas (X-rays)

Chandra 0.5 Msec image



But no significant sigh of new phenomena at the LHC yet!

L OOKIN G UNDER THE. LAMPPOST

LOST YOUR

-

YEOH,

| LOST THEM OVER
THERE. BLT THE
LIGHTS BETTER HERE.

sketchplanations

Are we looking in the
wrong place?



Long-Lived Particles (LLPs)

Standard model particles span a
wide range of lifetimes (7)
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Long-Lived Particles (LLPs)

We expect new phenomena to have a wide

Standard model particles span a range of lifetimes as well

wide range of lifetimes (7 .
& (7) But conventional searches for new phenomena

e (m) 1 é at the LHC are for promptly decaying particles
A p

10 f v On . .
S ., Long-lived particle

. O 8}{8603* searches Conventional
1071 + @ @ rus A LHC searches

Op O ZO t

10—20 4

L/ ) ] | ] ]
77 [ [ [ I I

|
|
1071 10-3 1 10°

We also need to look for new particles with long lifetimes!



Why Search for New LLPs?

1E0657-56

e LLPs appear in many BSM scenarios

— Supersymmetry, dark photons, inelastic dark matter,
axion-like particles, exotic Higgs bosons, etc.

« Can provide a dark matter candidate

Chandra 0.5 Msec image

« Why not? THINK
QUL Eak
— No sign of new phenomena at the LHC yet! > Need to look everywhere

— A new massive, long-lived particle would be a clear sign of new phenomena

Great discovery potential!




What’s a New LLP?

« From an experimentalist’s point of view, it’s a particle beyond the
standard model that:
decays a reconstructable distance from the primary collision
or
is quasi-stable on the scale of the detector

11



What’s a New LLP?

« From an experimentalist’s point of view, it’s a particle beyond the
standard model that:

decays a reconstructable distance from the primary collision
or
is quasi-stable on the scale of the detector

 They can:
— be charged, neutral or have color
— be light or heavy

— travel fast or slow

— decay to anything
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What’s a New LLP?

« From an experimentalist’s point of view, it’s a particle beyond the
standard model that:

decays a reconstructable distance from the primary collision
or
is quasi-stable on the scale of the detector
 They can:
— be charged, neutral or have color
— be light or heavy
— travel fast or slow

— decay to anything

* They often require dedicated searches or dedicated experiments
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The Large Hadron Collider
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e ~15 years of successful operation of the LHC!

e Superb operation efficiency for the experiments
— Usually > 90% efficient for both CMS and ATLAS (data taking + data quality)

14



General-Purpose LHC Experiments

ATLAS B

EXPERIMENT =

Muon Detectors Tile Calorimeter

Liquid Argon Calorimeter

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes.
Overall diameter :15.0m
Overalllength ~ :28.7m
Magnetic field  :3.8T

SILICON TRACKERS
Pixel (100x150 um) ~16m* ~66M channels
Microstrips (80x180 ym) ~200m* ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers.
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m* ~137,000 channels

RICH)
FORWARD CALORIMETER

Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PBWO, crystals

HADRON CALORIMETER (HCAL)
Toroid Magnets

Solenoid Magnet  SCT Tracker Pixel Detector TRT Tracker Brass + Plastc sintllator 7,000 channels

15



Anatomy of a General-Purpose Detector

| | | |
Oom im m 4m 5m 6m 7m

Key:
. - Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)

“““ Photon

. '-;‘ﬁ;‘", _»‘i 7
Electromagnetic 7 X
)}”" Calorimeter \

Hadron Magnet

Calorimeter

Muon System

Transverse slice
through CMS

D Bamaey, CERN, Febriswry 2004
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Adapted from Heather Russell

Long Lifetimes

Any given particle’s lifetime is sampled from an exponential

p(decay)

>

distance $yravelled
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Adapted from Heather Russell

Long Lifetimes and the Detector

Even particles with a short proper lifetime
can decay far from the interaction:

e.g. forct =5 cm, <By>~ 30
A

60% in 13% in
calorimeters muon system

‘F(dec’a\j)

10]0919p 8y} SpISINO % |~

Jdwoud, o1
Jaxoel] Ul 9%Gg

distance -Erave\\ed'
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Adapted from Heather Russell

Long Lifetimes and the Detector

But if we want to consider particles with
longer lifetimes, we could benefit from a
different search strategy:

Even particles with a short proper lifetime
can decay far from the interaction:

e.g. forct =5 cm, <By>~ 30
A

e.g. for ct =50 cm, <By> ~ 30
A
~ 3 —
(&)}
@ & > -
3 60% in 13% in N S &
o (o] . .
. c o, [) o
= calorimeters muon system o % 15% in 31%in =1
o = 2 calorimeters muon system @
E o &
> —
=05
N g (0]
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= X @ o e
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- o

S = - e Q

$ 1 Y3

S @ S 2
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distance tyravelled

distance travelled
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Adapted from Heather Russell

Variety of LLP Searches

Any given particle’s lifetime is sampled from an exponential

But if we want to consider particles with

Even particles with a short proper lifetime o ,
: . longer lifetimes, we could benefit from a
can decay far from the interaction: )
different search strategy:
e.g. forct =“5 cm, <By> ~ 30 e.g. forct =“50 cm, <By> ~ 30
('); —
g g
3 3
. =
- (I\nt: o W
o 20X
< = X5
5 & Kl
e El
distance travelled =
' distance travelled

Lifetime, mass, decay products, boost, etc. dramatically affect the detector signature,
and thus we use all subdetectors

20



Long-Lived Particle Searches

Can search for LLPs that decay: [+~ neutral disappearing | m BSM
charged track kinked track M lepton
. . any charge uar
« Within the detector Sk Y A = ohoton
".. .." M anything
e QOutside of the detector displaced
HSCP lepton
Can search for:
e The LLP itself
( .....................
 Its displaced decay products
. displaced,
e Both “ohoton \ colayed joi
gy Temerdng o e decsys




Long-Lived Particle Searches

Wide varietyof:  [== neutral disappearing | TR
charged track kinked track M lepton
Charges any charge v 4 m quark
—_ ’ K oton
1 R o ] gnything
— Final states teolaced
isplace
— Decay locations HSCP lepton
— Lifetimes
PR WL IR\ %
Design signature-driven searches
. displaced,
diﬁé"’t‘gﬁd \ delayed jets

Often interpret results with a
benchmark model, but can displacad
expand to a variety of scenarios

Not pictured:

.
" emerging -
vertex jet out of time decays




Challenges of LLP Searches

Unique object
reconstruction and
discriminating variables

Transverse slice
through CMS

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

23



Challenges of LLP Searches

Unique object
reconstruction and
discriminating variables

Transverse slice
through CMS

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Dedicated triggers

LHC

Level 1
trigger

High Level
Trigger

Offline
reconstruction
and analysis
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Challenges of LLP Searches

Unique object
reconstruction and
discriminating variables

Dedicated triggers

Transverse slice
through CMS

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

LHC

Level 1
trigger

High Level
Trigger

Offline
reconstruction
and analysis

Atypical backgrounds

25



Recent LLP Searches

Disappearing tracks Inelastic dark matter Heavy neutral leptons
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https://arxiv.org/abs/2309.16823
https://arxiv.org/abs/2305.11649
https://arxiv.org/abs/2407.10717
https://arxiv.org/abs/2407.10717

Wide range of signhatures, models, and lifetimes explored at the LHC

Overview of CMS long-lived particle searches

CMS Preliminary March 2024
UDD, g-+tbs, mg =2500 GeV g 2104.13474 (Jets with displaced vertices) [N 00006=0/09m| 140 fb~*
UDD, g—tbs, my =2500 GeV § 2012.01581 (Displaced jets) [ OG05=Tm 13267
UDD, t-dd, m: = 1600 GeV t 2104.13474 (Jets with displaced vertices) [N G 60035=0008m] 140 b~
UDD, t-ad, m: = 1600 GeV t 2012.01581 (Displaced jets) [ o00z=1520m 132 fb?
LQD, £-bl, mé = 600 GeV ¢ | 180805082(2u+2jets) <003lm e
LQD, £-bl, m: = 460 GeV t 211004809 (Displaced leptons)  00001-10m 118~
LQD, =B/, mi = 1600 GeV t 2012.01581 (Displaced jets) [N 0005=024m] 132 fb~?
GMSB, §~gG, my = 2450 GeV g 2012.01581 (Displaced jets) | 0.006-055m 1322
GMSB, §-gG, my = 2100 GeV g 1906.06441 (Delayed jet+MET) [ G534 m| 137 fo~?
Split SUSY, §»adx?, m;=2500 GeV i 2012.01581 (Displaced jets) [/ 0.007-0.36'm| 132fb7
Spit SUSY, §dxg. mg= 1300 Gev i | wsoomogesswen  am 360
Split SUSY (HSCP), fi, = 0.1, m; = 1600 GeV § 132
mGMSB (HSCP) tanf =10, u>0 , m: =247 GeV T 13fb7?
Stopped £, t-ty2, mi =700 GeV i 1801.00359 (Delayed jet) 39 b2
Stopped §, §~qax3. f5,=0.1, my= 1300 GeV § 1801.00359 (Delayed jet) 39fb?
Stopped &, §-aax2(uuxd), fy, = 0.1, m; = 940 GeV § 1801.00359 (Delayed pp) 39fb?
AMSB, x *=xin*, m,- =700 GeV x: 2004.05153 (Disappearing track) | 07-30m 140 fb~?
§-ax3 or 4,4, X5 X5 2X3m . m; = 1600GeV,m ;= 1575GeV = 1909.03460 (Disappearing tracks + jets with Mz) | 011-10m 137 fb~?
Goaxd or gy, XS oX3m s, m; = 2000 GeV, mye=1000 GeV  y= 1909.03460 (Disappearing tracks + jets with M) | 026-2 m 137 fb?
totyd or bys, i =xin*, mi=1100 GeV, mg=1000GeV & 1909.03460 (Disappearing tracks +jets with M) | 025-9'm/ 137 fb~?
GMSB, X3=HG (50%)/ZG(50%), myz = 600 GeV x 2212.06695 (Trackless jets + MET) [ 004-12m| 138 fb~?
GMSB, x2=HG (50%)/ZG (50%), my = 300 GeV © 2212.06695 (Trackless jets + MET) | 0p5-04m 138 fb~?
GMSB SPS8, x2+yG, my = 400 GeV © 1909.06166 (Delayed y(y)) [ 02=6m| 77 o7
GMSB, co-NLSP, /16, mj =270 GeV i 211004809 (Displaced leptons) ~ 5e05-265m 118 b
H-Z0Z5(0.1%), Zoit, my = 125 GeV, my = 20 GeV X 220508582 (Displaced dimuon)  Sed5-5m 98 b
H~2Z525(0.1%), Zo=up(15.7%), my =125 GeV, my=5GeV  x 2112.13769 (Displaced dimuon scouting) [ 00001025 m| 101 b~
H-XX(10%), X~+ee, my =125 GeV, my =20 GeV X 14116977 (Displaced dielectron)  000012-25m 2007 (8 Tev)
H-XX(0.03%), X~II, my = 125 GeV, mx =30 GeV X 2110.04809 (Displaced leptons) [ 0001=012 M| 118 b~
H=XX(10%), X~bb, my = 125 GeV, my =40 GeV x 2012.01581 (Displaced jets) [ 0.001-0.53 W 132
H-XX(10%), X=bb, my = 125 GeV, my = 40 GeV X 2110.13218 (Displaced jets +2) [ 0.004-0248m | 117 b
H-XX(10%), X-bb, my = 125 GeV, mx = 40 GeV X 2107.04838 (Hadronic decays in CSCs) [ 012-450m) 137 b~
H-XX(10%), X=TT, my = 125 GeV, my =7 GeV X 2107.04838 (LLPdecaysin CSCs) | 000-23m 137 fo~?
dark QCD, mx,,, = 1500 GeV, m.,,, = 10 GeV, agonstic Yool 2403.01556 (Emerging jet +jet) [ 0.003-0.3 m | 138 b~
dark QCD, my,,, = 1500 GeV, ms,,, =10 GeV, GNN Yoo 138 b~
H-XX(10%), X=bb, my = 125 GeV, my = 40 GeV X CMS-PAS-EX0-23-013 (Displaced Jets Run3) [ 0.0005-2.5 m) 35 b~ (13.6 TeV)
H-XX(10%), X=dd, mw = 125 GeV, my = 40 GeV X CMS-PAS-EX0-23-013 (Displaced Jets Run3) | 0 0005-2.5 m) 35 fb~* (13.6 TeV)
H=XX(10%), X>T7, my = 125 GeV, myx = 40 GeV X CMS-PAS-EX0-23-013 (Displaced Jets Run3) |11 0 i001-0/5'm)| 35 b7 (13.6 TeV)
1 1 1 1 1
107 10-3 103 101 10! 10°

ct [m]
Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.



What am | working on now?

« One example of my ongoing work:

Search for displaced dimuons produced in association
with ttbar with the CMS experiment

Working with Lovisa Rygaard (PhD
student): see her talk for more details!

- 2 .
o .
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What’s Next?
HiLumM

LARGE HADRON COLLIDER

HL-LHC

LHC

EYETS 13.6 TeV LS3 13.6 - 14 TeV
13 TeV energy

Dlodes Consolldation
LIU Installation .
|n eraction inner triplet ) HL LH(_:
installation

8 TeV button collimators
reglons pulot beam radlatlon limit

R2E prOject Civll Eng P1-P5
2018 | 2019 | 2020 2023 2025 | 2026 ||||||Iw
ATLAS - CMS ./———-—"’4
5t075
ATLAS - CMS x nominal Lumi

splice consolidation olimit

experiment upgrade phase 1
beam plpes ) ; ] . HL upgrade
nominal Lumi w ALICE - LHCb | 2 x nominal Lumi A =
75% nominal Lumi / upgrade
(s S 4000 b

We are here, High-Luminosity LHC
in Run 3 taking data in ~2030

29



HL-LHC

High-Luminosity LHC

High pileup: about 200 additional proton collisions per bunch crossing

14 TeV center-of-mass energy
> 10 times more data by the end

Expect up to 200 interactions per proton-
proton collision,

unprecedented amount of radiation Track information at level 1 trigger

Replace barrel calorimeter

Higher trigger rates
CMS Detector g &8 - readout electronics

Higher geometrical coverage, with high
resolution for all subdetectors

Extend muon
coverage

New subdetectors, including a

completely new silicon high-granularity New timing
. detector

endcap calorimeter (HGCal), and a Replace

completely new MIP timing detector tracker

30



CMS MTD TDR

LLPs & The MIP Timing Detector

« How we can take advantage of this new CMS subdetector for LLPs:
e Look for delayed photons!

« Using the MTD really improves the sensitivity, especially for 0.1 < ctau <10 cm

6 CMS Phase-2 Simulation 14 TeV
L | 10 E T I T T T l 1 T T l T T T | T T 1 ]
g B L e no MTD (300 fb)
T = 10°}|- GMSB X371 +G ~ no MTD (1000 fb) 4
Timing layer I - MTD (1000 fb) ]
10°F E
10°E . \ =
. 102 | NN -
LT] R 10 NS / E
LA AR 27 S 1 N\ \ 3
107" _— .
10—2 : L I L 1 1 I L 1 1 l 1 1 1 | 1 1 | :
200 400 600 800 1000

A [TeV]
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https://cds.cern.ch/record/2667167/

Circular:

N )
s+ Schematic of an
g 80-100 km

s long tunnel

L

P4

00ster(S0Km)

CEPC Coy;
C Collider Ring(S0Km)

SppC ¢ Ollider Rlng(SOkluJ

LTB : Linac to Booster

BTC : Booster to Collider Ring

And After the HL-LHC?

Linear:
CLIC (CERN)

Overview of the CLIC layout at Vs =3 TeV

819 kiystrons B19 klystrons
circumferences 2
15 MW, 142 ps | | | Gelay T3m | | ' 1S MW, 142 s
drive beam accelerator CR1293m drive beam accelerator
CR2439m
25&m 25km

delay loop [ >

rive am @ @

decelerator, 24 sectors of 878 m
4 s
NN
s . - ——_

A &~ main linac, 12 GHz, 100 MV/m, 21 km

et main knac

i

« We would like another particle
collider!

o At the very least, some collider
where we make a lot of Higgs
bosons!

A )

48.3 km

CR  combiner ring

TA  twrnsround

DR damping ring

PDR pradamping ring

BC  bunch comprossor
BDS beam delivary system
P interaction point

- dump

Main Beam
booster linac
285109 GeV

Muon Collider (CERN)

needs proton driver, thus CERN ideal, also for demonstrator

IP1

Muon Collider Accelerator

>]0TeV CoM
~10km circumference

] {i) 4
i "4 GeV Target, nDecay piCooling  Low Ene E o
i Proton & pBunching Channel —pAcceleration : o 4

i, Source  Channel : Rrnffijjz=="

« Different stages of technical
maturity

o Allin the multi-Giga €/S/CHF range

CCC (USA)

Vacuum Space for Distributed Coupling Linac

Py <9 Sy ! fim n (2N > b
SAASS LSS 3300 00 0 b Ju b ididiaat ooy
o, B, My M R i el o M

Electric Field Magnitude Magnetic Field Magnitude

Hpeak =12
Hunperturbed
Bpesk _ 9 22
Eacc .
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Open Symposium on the ESPP

LLPs at Future Colliders

« One example of projections:

heavy neutral leptons
e Can be long-lived

 Significant part of the
allowed parameter space

under 100 GeV within the
discovery reach of SHiP and

u,|?

Exclusion

‘ |
. \
2. ”~ \ ‘
ph N\t \ 4
” A ‘
o . R
/I < \
% : \ \
v L
C oA \
f/ \ ‘
% R |
\\ .
\
\ -
]

S
N~ o

1 ESPP 2026: EFeTiminary

FCC-ee at the Z-pole

101 102
my [GeV]
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https://agenda.infn.it/event/44943/timetable/?view=standard

So... what were we trying to do again?



Fundamental scientific questions:
e Does the Higgs boson exist?

e \What is the nature of dark matter?

1E 0657-56

Chandra 0.5 Msec image




Fundamental scientific questions: Build high energy colliders
e Does the Higgs boson exist? *LHC and HL-LHC:
* What is the nature of dark matter? * ATLAS, CMS, LHCb

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes
Overall diameter : 15.0 m
Overalllength ~ :28.7m
Magneticfield :3.8T

1E 0657-56

SILICON TRACKERS
Pixel (100x150 pm) ~16m* ~66M channels
Microstrips (80x180 ym) ~200m? ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

_ N \\ \\\ N
CRYSTAL \\\ .’s\ )
ELECTROMAGNETIC s S
CALORIMETER (ECAL) \\x
als ‘\‘

~76,000 scintillating PBWO, cryst: ©,
N

Z &
\ | 25
a > 3 . ‘

1 HADRON CALORIMETER (HCAL)
Chandra 0.5 Msec image

lastic scintillator ~7,000 channels




Exploit these colliders and detectors
to the max

e Realize detectors can do much more
than what they were initially
designed for!

e Look for new particles in ways not
thought of when the LHC was built!

------ neutral ; : l BSM
disappearin
charged Ec)rgck 9 kinked track M lepton
= any charge 1 W quark
Y.‘" - photon
* o W anything

displaced
HSCP lepton

J~

. YA &
lu‘“ SN
.: "““ “
N 1A\ 4 displaced
displaced sl delaved iet
t
photon \§ elayed jets
.
.
.
displaced E emerging Not r_:ictured:
vertex jet out of time decays
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Exploit these colliders and
detectors to the max

e Challenging... but lots of
space for creativity!

------ neutral ; ; l BSM
disappearin .
— grr:?rgﬁ:rge E[)rz ck 9 kinked track : |epto:
_ 1 quar
Y{' R photon
* o W anything

displaced
HSCP lepton

Y
..
~

.: “ “‘ X
i A S\ * .\- displaced,
displaced . ““ _
photon . s delayed jets
.
\J

displaced E emerging Not Pictured:
vertex jet out of time decays
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Exploit these colliders and detectors
Again to address fundamental scientific to the max

questions: e Realize detectors can do much more

e Does the Higgs boson exist?

. . |
e What is the nature of dark matter? designed for!

than what they were initially

e Challenging... but lots of space for

kinked track

A

l BSM

M lepton

W quark
photon

M anything

displaced
lepton

o
creativity!
[SEELTAL IR e e T R RSO, $ 00 00090 T neutral disappearing
‘ charged track
== any charge
¥
HSCP
v DRI
displaced
photon
Chandra 0.5 Msec image
displaced
vertex

NG

Yu
Yo
~

" emerging
jet

.
* displaced,
\ delayed jets

Not pictured:
out of time decays



Take Home Points

e Lots of reasons to search for new physics at the
LHC: unexplained observed phenomena like
dark matter, neutrino masses, the hierarchy

problem, etc.



Take Home Points

e Lots of reasons to search for new physics at the

LHC: unexplained observed phenomena like
dark matter, neutrino masses, the hierarchy
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o Performing a variety of searches for new
particles at the LHC



Take Home Points

e Lots of reasons to search for new physics at the
LHC: unexplained observed phenomena like

dark matter, neutrino masses, the hierarchy
prObIem, etC- LOOKiNG UNDER THE. LAMPPOST

o Performing a variety of searches for new
particles at the LHC

« But maybe we’re searching in the wrong place



Take Home Points

Lots of reasons to search for new physics at the

LHC: unexplained observed phenomena like
dark matter, neutrino masses, the hierarchy |
problem, etc. F—
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Take Home Points

Lots of reasons to search for new physics at the
LHC: unexplained observed phenomena like
dark matter, neutrino masses, the hierarchy

p rO b I e m ) etC . LOOKING UNDER THE- LAMPPOST

Performing a variety of searches for new
particles at the LHC

But maybe we’re searching in the wrong place

We should look for anything and everything that

we’re sensitive to, including long-lived particles

Exciting time for searches at the LHC, HL-LHC,
and beyond!




Interested in joining us?

e One option: The Quantum Universe Cluster of Excellence (U Hamburg +
DESY) was recently renewed

e Quantum Universe Attract. Workshop

e 23-25 Nov 2025
o Talk to me, Henriette Ullmann, Katharina Behr, and others!

QUANTUM UNIVERSE
ATTRACT.

WORKSHOP“

)
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https://indico.desy.de/event/50023/
https://indico.desy.de/event/47726/timetable/?view=standard#124-quantum-universe-attractwo
https://indico.desy.de/event/47726/timetable/?view=standard#119-bound-to-be-discovered-the

Maybe YOU will be the next
to discover something!




Backup



Example LLP Discriminating Variables: Displacement
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Example LLP Discriminating Variables: Delayed Time of Arrival
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Example LLP Discriminating Variables: Delayed Time of Arrival
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Example LLP Discriminating Variables: More Exotic

CMS
=

210 hits in
muon system!

138 fb™ (13 TeV)
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Example LLP Discriminating Variables: More Exotic

CMS
: é/
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LLP Triggers

. . . CMS Simulation Preliminary (13.6 TeV)
Long-lived particles could leave unique g E T o
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The performance of these triggers in |
2022-2024 data and their powerful o1
complementarity is the crux of this new -
preliminary result: PAS-EXO-23-016 EchL
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http://cds.cern.ch/record/2937649

