

A Bit About Me

- I'm an experimental particle physicist
 - I work on high-energy physics
 - I work mostly on the CMS experiment at the LHC
 - Also on the FCC and the CODEX-b experiment
- DESY staff member
- I'm interested in searches for new phenomena, particularly long-lived particles
- Really happy to be here! Hope you're having fun and learning a lot :)
- Interrupt me at any time and ask questions!

My Biography

Bachelors degree from University of Pennsylvania (1)

• Sept. 2004 - May 2008

PhD in physics from Brown University (2)

- Sept. 2008 Nov. 2015
- Earned a Masters in Physics by 2010
- Thesis: "A Search for Delayed Muons in the CMS Experiment", Nov. 2015

Postdoctoral researcher at the Ohio State University (3) (based at CERN (4))

• Dec. 2015 - Sept. 2020

Research fellow at CERN (4)

• Oct. 2020 - Oct. 2022

Staff (tenure-track) at DESY (5)

• As of Nov. 1, 2022

What is everything made of?

The Standard Model (SM)

Highly successful theory of fundamental particle interactions

Standard particles

What is everything made of?

The Standard Model (SM)

Highly successful theory of fundamental particle interactions

Standard particles

However, there are still many outstanding questions, e.g.:

What is dark matter?

What is everything made of?

Many theories beyond the SM (BSM):

SUPERSYMMETRY

However, there are still many outstanding questions, e.g.:

What is dark matter?

But no significant sign of new phenomena at the LHC yet!

Are we looking in the wrong place?

Long-Lived Particles (LLPs)

Standard model particles span a wide range of lifetimes (τ)

Long-Lived Particles (LLPs)

Standard model particles span a wide range of lifetimes (τ)

We expect **new phenomena** to have a wide range of lifetimes as well

But **conventional searches** for new phenomena at the LHC are for **promptly** decaying particles

We also need to look for new particles with long lifetimes!

Why Search for New LLPs?

LLPs appear in many BSM scenarios

 Supersymmetry, dark photons, inelastic dark matter, axion-like particles, exotic Higgs bosons, etc.

Can provide a dark matter candidate

Why not?

- No sign of new phenomena at the LHC yet! → Need to look everywhere
- A new massive, long-lived particle would be a clear sign of new phenomena

THINK OUTSIDE THE BOX X O X O X O

Great discovery potential!

What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

What's a New LLP?

 From an experimentalist's point of view, it's a particle beyond the standard model that:

```
decays a reconstructable distance from the primary collision or is quasi-stable on the scale of the detector
```

- They can:
 - be charged, neutral or have color
 - be light or heavy
 - travel fast or slow
 - decay to anything

What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

```
decays a reconstructable distance from the primary collision or is quasi-stable on the scale of the detector
```

- They can:
 - be charged, neutral or have color
 - be light or heavy
 - travel fast or slow
 - decay to anything
- They often require dedicated searches or dedicated experiments

The Large Hadron Collider

- ~15 years of successful operation of the LHC!
- Superb operation efficiency for the experiments
 - Usually > 90% efficient for both CMS and ATLAS (data taking + data quality)

General-Purpose LHC Experiments

Anatomy of a General-Purpose Detector

Long Lifetimes

Any given particle's lifetime is sampled from an exponential

Long Lifetimes and the Detector

Any given particle's lifetime is sampled from an exponential

Even particles with a short proper lifetime can decay far from the interaction:

Long Lifetimes and the Detector

Any given particle's lifetime is sampled from an exponential

Even particles with a short proper lifetime can decay far from the interaction:

But if we want to consider particles with longer lifetimes, we could benefit from a different search strategy:

Variety of LLP Searches

Any given particle's lifetime is sampled from an exponential

Even particles with a short proper lifetime can decay far from the interaction:

But if we want to consider particles with longer lifetimes, we could benefit from a different search strategy:

Lifetime, mass, decay products, boost, etc. dramatically affect the detector signature, and thus we use all subdetectors

Long-Lived Particle Searches

Can search for LLPs that decay:

- Within the detector
- Outside of the detector

Can search for:

- The LLP itself
- Its displaced decay products
- Both

Long-Lived Particle Searches

- Wide variety of:
 - Charges
 - Final states
 - Decay locations
 - Lifetimes
- Design **signature-driven** searches
- Often interpret results with a benchmark model, but can expand to a variety of scenarios

Challenges of LLP Searches

Unique object reconstruction and discriminating variables

Challenges of LLP Searches

Unique object reconstruction and discriminating variables

Challenges of LLP Searches

Unique object reconstruction and discriminating variables

Dedicated triggers

Atypical backgrounds

Recent LLP Searches

Disappearing tracks

Inelastic dark matter

10⁵ 1 short DTk Baseline Genuine showering Spurious Data T5btbtLL(1500,1100), cτ =10 cm Data T5btbttLL(1500,1100), cτ =10 c

Heavy neutral leptons decaying to displaced jets

Wide range of signatures, models, and lifetimes explored at the LHC

Overview of CMS long-lived particle searches

What am I working on now?

One example of my ongoing work:

Search for displaced dimuons produced in association with ttbar with the CMS experiment

Working with Lovisa Rygaard (PhD student): see her talk for more details!

What's Next?

LHC / HL-LHC Plan

High-Luminosity LHC

HL-LHC

- 14 TeV center-of-mass energy
- > 10 times more data by the end
- Expect up to 200 interactions per protonproton collision,

unprecedented amount of radiation CMS Detector

- Higher geometrical coverage, with high resolution for all subdetectors
- New subdetectors, including a completely new silicon high-granularity endcap calorimeter (HGCal), and a completely new MIP timing detector

High pileup: about 200 additional proton collisions per bunch crossing

LLPs & The MIP Timing Detector

- How we can take advantage of this new CMS subdetector for LLPs:
- Look for delayed photons!
- Using the MTD really improves the sensitivity, especially for 0.1 < ctau < 10 cm

And After the HL-LHC?

Circular:

FCC (CERN)

CEPC (China)

Linear:

CLIC (CERN)

Overview of the CLIC layout at $\sqrt{s} = 3 \text{ TeV}$

- We would like another particle collider!
- At the very least, some collider where we make a lot of Higgs bosons!
- Different stages of technical maturity
- All in the multi-Giga €/\$/CHF range

Muon Collider (CERN)

CCC (USA)

LLPs at Future Colliders

- One example of projections:
 heavy neutral leptons
 - Can be long-lived
- Significant part of the allowed parameter space under 100 GeV within the discovery reach of SHiP and FCC-ee at the Z-pole

So... what were we trying to do again?

Fundamental scientific questions:

- Does the Higgs boson exist?
- What is the nature of dark matter?

• ...

Fundamental scientific questions:

- Does the Higgs boson exist?
- What is the nature of dark matter?

• ...

Build high energy colliders

- LHC and HL-LHC:
 - ATLAS, CMS, LHCb

Exploit these colliders and detectors to the max

- Realize detectors can do much more than what they were initially designed for!
- Look for new particles in ways not thought of when the LHC was built!

Exploit these colliders and detectors to the max

Challenging... but lots of space for creativity!

Again to address fundamental scientific questions:

- Does the Higgs boson exist?
- What is the nature of dark matter?

• ...

Exploit these colliders and detectors to the max

- Realize detectors can do much more than what they were initially designed for!
- Challenging... but lots of space for creativity!

• Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.

- Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.
- Performing a variety of searches for new particles at the LHC

- Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.
- Performing a variety of searches for new particles at the LHC
- But maybe we're searching in the wrong place

- Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.
- Performing a variety of searches for new particles at the LHC
- But maybe we're searching in the wrong place
- We should look for anything and everything that we're sensitive to, including long-lived particles

- Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.
- Performing a variety of searches for new particles at the LHC
- But maybe we're searching in the wrong place
- We should look for anything and everything that we're sensitive to, including long-lived particles
- Exciting time for searches at the LHC, HL-LHC, and beyond!

Interested in joining us?

- One option: The Quantum Universe Cluster of Excellence (U Hamburg + DESY) was recently renewed
- Quantum Universe Attract. Workshop
 - 23–25 Nov 2025
- Talk to me, <u>Henriette Ullmann</u>, <u>Katharina Behr</u>, and others!

Maybe **YOU** will be the next to discover something!

Backup

Example LLP Discriminating Variables: Displacement

Example LLP Discriminating Variables: Delayed Time of Arrival

Example LLP Discriminating Variables: Delayed Time of Arrival

Electron time

Example LLP Discriminating Variables: More Exotic

Example LLP Discriminating Variables: More Exotic

LLP Triggers

- Long-lived particles could leave unique signatures that may not captured by standard triggers
- Dedicated triggers targeting different LLP signatures enable increased sensitivity to wide variety of signal models
- At CMS, during Run 3, variety of such triggers were introduced and/or improved compared to Run 2
- The performance of these triggers in 2022-2024 data and their powerful complementarity is the crux of this new preliminary result: PAS-EXO-23-016

