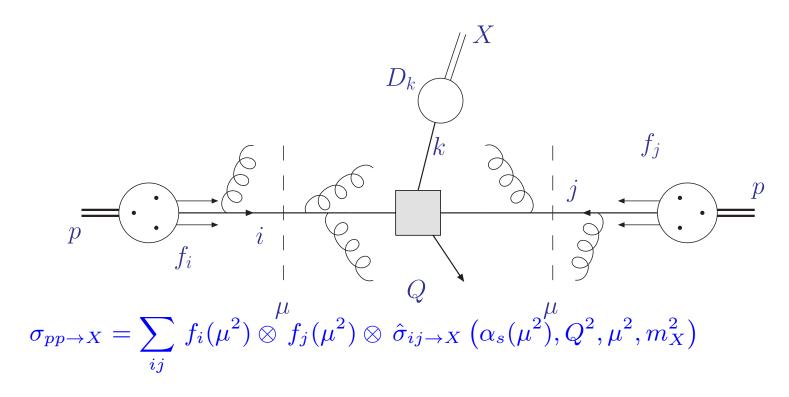
Including Coulomb corrections $t\bar{t}$ production

Sven-Olaf Moch

Universität Hamburg

Plan

Coulomb corrections

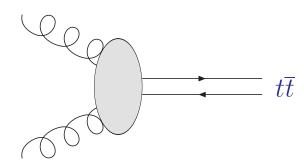

Top-quark pair production near threshold at LHC
 Y. Kiyo, J. H. Kühn, S. M., M. Steinhauser and P. Uwer arxiv:0812.0919

Phenomenology update

Updated predictions for toponium production at the LHC
 M.V. Garzelli, G. Limatola, S. M., M. Steinhauser and S. Zenaiev

arXiv:2412.16685

QCD factorization



- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij\to X}$ calculable in perturbation theory
 - ullet cross section $\hat{\sigma}_{ij o k}$ for parton types $i,\,j$ and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, . . .

Heavy quark production

Quantum numbers

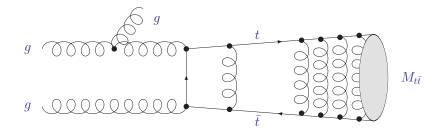
- ullet Quantum numbers of heavy quark pair $tar{t}\left(^{2S+1}L_J^{[1,8]}
 ight)$
- Notation from spectroscopy
 - orbital angular momentum L: $\rightarrow S$ -wave, P-wave, . . .
 - spin 2S + 1: singlet, triplet
 - total angular momentum J
 - color [1,8]: singlet, octet

Kinematics

- Close to production threshold
 - velocity $\beta_{t\bar{t}} = \sqrt{1 4m^2/s}$ of heavy quarks
- Born cross section near threshold
 - S-wave: $\sigma_{S\text{-wave}}^{(0)} \sim \beta$
 - *P*-wave: $\sigma_{P\text{-wave}}^{(0)} \sim \beta^3$

Cross section (I)

• Parametric form of cross section in $eta_{tar{t}} = \sqrt{1-4m^2/s}$


Threshold logarithms

- Sudakov logarithms from emission of soft and collinear gluons
 - all orders in perturbation theory $\alpha_s^n \ln^k(\beta_{t\bar{t}})$ with $2n \geq k \geq 1$
 - resummation of large logarithms (renormalization group equation)

Kidonakis, Sterman '97, Bonciani, Catani, Mangano, Nason '98, ...

Coulomb corrections

Singular contributions from gluon exchanges among $t\bar{t}$ final state

- all orders in perturbation theory $\alpha_s^n/\beta_{t\bar{t}}^k$ with $n\geq k\geq 1$
- resummation with non-relativistic QCD (NRQCD)

Cross section (II)

Perturbation theory

Partonic cross section

$$\hat{\sigma}_{t\bar{t}} = \hat{\sigma}_{t\bar{t}}^{(0)} \times \sum_{k=0} \left(\frac{\alpha_s}{\beta_{t\bar{t}}} \right)^k \times \exp \left\{ \underbrace{\ln(\beta_{t\bar{t}}) g_0(\alpha_s \ln(\beta_{t\bar{t}}))}_{\text{LL}} + \underbrace{g_1(\alpha_s \ln(\beta_{t\bar{t}}))}_{\text{NLL}} + \dots \right\}$$

- Hadronic cross section
 - convolution with PDFs $\mathcal{L}_{ij} = f_i \otimes f_j$
 - parametric form

$$\frac{d\sigma_{t\bar{t}}}{d\beta_{t\bar{t}}} \simeq \beta_{t\bar{t}} \mathcal{L}_{ij}(\beta_{t\bar{t}}) \, \hat{\sigma}_{ij\to t\bar{t}}(\beta_{t\bar{t}})$$

- Power counting
 - one power $eta_{tar{t}}$ from Born cross section $\sigma_{S ext{-wave}}^{(0)}$
 - one power $eta_{tar{t}}$ from phase space in convolution with \mathcal{L}_{ij}
- Breakdown of fixed order QCD perturbation theory

•
$$d\sigma_{t\bar{t}}^{\text{LO}} \sim \beta_{t\bar{t}}^2$$
,..., $d\sigma_{t\bar{t}}^{\text{N}^3\text{LO}} \sim \frac{1}{\beta_{t\bar{t}}}$, $d\sigma_{t\bar{t}}^{\text{N}^4\text{LO}} \sim \frac{1}{\beta_{t\bar{t}}^2}$,...

Phenomenology

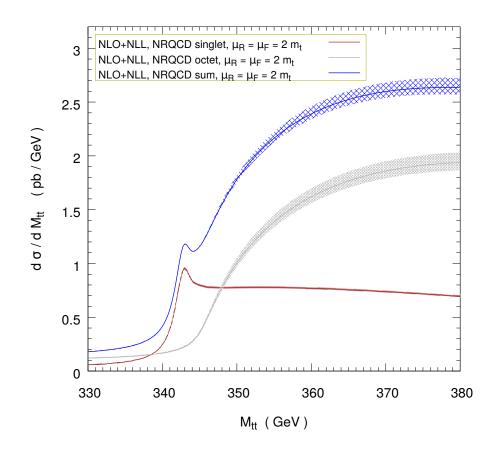
- FCC-ee: much work (theory and phenomenology) [many people]
 - fixed center-of-mass energy S allows $t\bar{t}$ threshold scan at $\sqrt{S}\sim 2m_t$
 - dominant color-singlet production $o t ar t \left({}^3S_1^{[1]}
 ight)$
- FCC-ee: bound state corrections also for other charged final states
 - W^+W^- -pairs with corrections from Coulomb photons $\Delta\sigma/\sigma_{\rm Born}\simeq {\cal O}({\rm few})$ % Actis, Beneke, Falgari, Schwinn '08
- LHC: effects on top-mass measurement Hagiwara, Sumino, Yokoya '08
 - complete NLO NRQCD result Petrelli, Cacciari, Greco, Maltoni, Mangano '97 (corrections by Hagiwara, Sumino, Yokoya '08)
 - detailed study in NRQCD assembling existing knowledge at NLO/NLL Kiyo, Kühn, S.M., Steinhauser, Uwer '08
 - bound-state effects on kinematical distributions Sumino, Yokoya '10
 - more studies since 2020 . . .

Theory framework for hadro-production

- Recall master equation $\sigma_{pp o tar{t}} = \sum_{ij} f_i \otimes f_j \otimes \hat{\sigma}_{ij o tar{t}}$ top-quark pairs produced as color-singlet/octet $o tar{t} \left({}^{2s+1}S_J^{[1,8]} \right)$

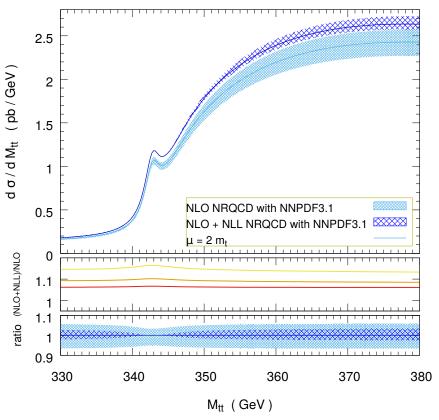
 - threshold at $M_{t\bar{t}}\sim 2m_t$ with $M_{t\bar{t}}=(p_t+p_{\bar{t}})^2$

NRQCD factorization


- Partonic cross section $\hat{\sigma}_{ij\to t\bar{t}} = F_{ij\to T} \times \Im G(M_{t\bar{t}})$
 - free $t\bar{t}$ production rate $F_{ij\to T}$
 - "bound state" Green's function \$\(\sigma G\) (imaginary part)
- Coulomb resummation from solution of Schrödinger equation in NRQCD with QCD heavy quark potential $V_{\rm QCD}(\vec{x})$
 - small energies $E=E_t+E_{ar t}-2m_t$ in toponium rest frame

$$\left\{ -\frac{\vec{\nabla}^2}{m_t} + V_{QCD}(\vec{x}) - (E + i\Gamma_t) \right\} G(E, \vec{x}) = \delta^{(3)}(\vec{x})$$

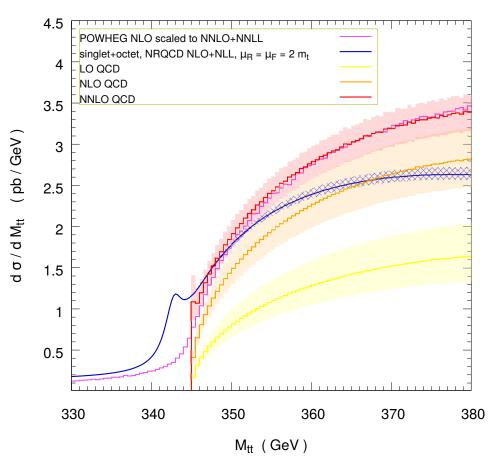
- Differential kinematics $\frac{d\hat{\sigma}_{ij o tar{t}}}{dM_{\cdotar{ au}}^2} = F_{ij o T} imes \Im G^{[1,8]}(M_{tar{t}})$
 - soft-collinear resummation in $F_{ij\to T}$ at NLL and matching at NLO


Invariant mass distristribution (I)

- $d\sigma/dM_{t\bar{t}}$ at LHC ($\sqrt{S}=13$ TeV) Garzelli, Limatola, S.M., Steinhauser, Zenaiev '24
- Parton channels with large threshold logarithms
 - $ullet gg o tar t \left({}^1S_0^{[1]}
 ight)$ attractive interaction o Coulomb resonance
 - $gg o t ar t \left({}^1S_0^{[8]} \right)$, $q ar q o t ar t \left({}^3S_1^{[8]} \right)$ repulsive interaction

Invariant mass distristribution (II)

- $d\sigma/dM_{t\bar{t}}$ at LHC ($\sqrt{S}=13$ TeV) for top quark pole mass $m_t=172.5$ GeV
 - fixed order NLO vs. NLO+NLL resummed NRQCD predictions
 - scale variation $\mu_r = \mu_f \in \{m_t, 2m_t, 4m_t\}$

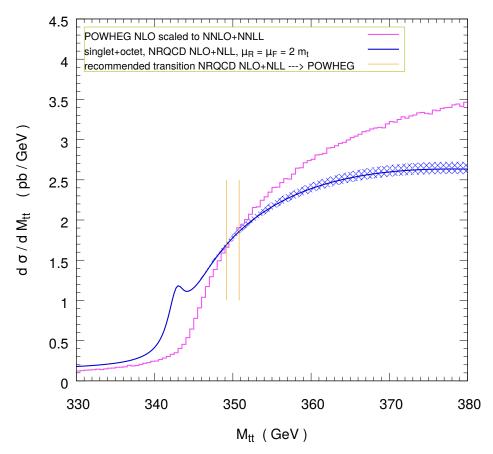


- ullet S-wave channels without large threshold logarithms omitted
 - $gg o {}^3S_1^{[1,8]}$, $q\bar{q} o {}^1S_0^{[1,8]}$, $gq o {}^1S_0^{[1,8]}$, $gq o {}^3S_1^{[8]}$ sum up to $\mathcal{O}(5\%)$

Matching to fixed order (I)

- $d\sigma/dM_{t\bar{t}}$ with NNPDF3.1 PDFs; threshold at $dM_{t\bar{t}}=345~{\rm GeV}$
 - NLO+NLL resummed NRQCD predictions
 - fixed order QCD at LO, NLO, NNLO with adapted version of MATRIX
 Garzelli, Mazzitelli, S.M., Zenaiev '23
 - NLO+POWHEG (rescaled to NNLO+NNLL total cross section)

Anuar, Grohsjean, Jeppe, Schwanenberger [private work]



Matching to fixed order (II)

- $d\sigma/dM_{t\bar{t}}$ with matching of NRQCD to fixed order perturbation theory
 - NLO+NLL resummed NRQCD predictions
 - NLO+POWHEG (rescaled to NNLO+NNLL total cross section)

Anuar, Grohsjean, Jeppe, Schwanenberger [private work]

ullet Validity of NRQCD theory framework in range $M_{tar{t}} \in [340, 350]$ GeV

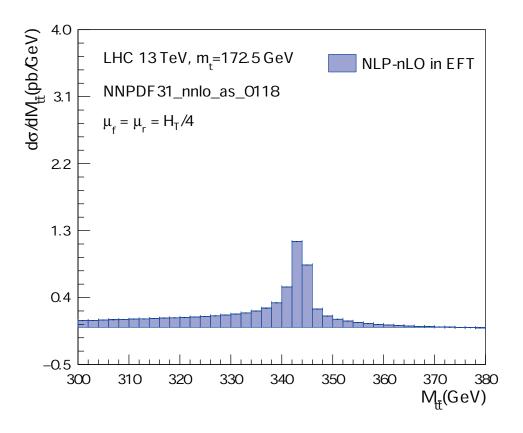
Recent phenomenology

- Resummation (small $\beta_{t\bar{t}}$) in SCET

 Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yonggi Xu,Li Lin Yang '20
 - ullet double-differential distribution in $M_{tar t}$ and $y_{tar t}$
- Signatures of toponium formation

Fuks, Hagiwara, Ma, Zheng '21

- ullet color-singlet spin-ullet toponium bound state η_t of tar t
- ullet di-lepton decay $gg o\eta_t o lar lbar b
 uar
 u$
- ullet Re-weighting of tar t matrix elements with a NRQCD Green's function


Fuks, Hagiwara, Ma, Zheng '24

Comment on 2004.03088

• Resummation effects in top quark mass determination with claimed shift of $m_t \sim 1.4~{\rm GeV}$

Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yongqi Xu, Li Lin Yang '20

• Contributions from resummation in region $300~{\rm GeV} \le M_{t\bar{t}} \le 380~{\rm GeV}$ at the $13~{\rm TeV}$ LHC

Comment on 2102.11281

• Signatures of spin-0 toponium bound state η_t decay

Fuks, Hagiwara, Ma, Zheng '21

- theory estimate based on Sumino, Yokoya '10
- di-lepton decay $gg o \eta_t o l ar l b ar b
 u ar
 u$
- Short-comings
 - toponium cross section essentially as integral over $M_{t\bar{t}}$ (way too large range in $M_{t\bar{t}}$ for application of NRQCD)
 - neglect color-octet configurations (no enhancement)
- Published ratios for toponium cross sections σ_{η_t} vs. $\sigma_{t\bar{t}}$ not suitable for re-weighting of MC event samples in experimental analysis

Comment on 2411.18962

- Re-weighting matrix elements for $t\bar{t}$ production, combined with parton showering Fuks, Hagiwara, Ma, Zheng '24
- Short-comings
 - no higher order effects
 - no distinction of S-wave, P-wave, . . .
 - no distinction of color-singlet/octet configurations
- Very large suggested range for re-weighting of matrix elements
 - $|M_{t\bar{t}} 2m_t| \le 20$ GeV too large?

Summary

- Coulomb corrections and their resummation for $t\bar{t} + X$ production
 - update of resummation studies at NLL for CMS analyses
- Combination with QCD perturbation theory to NNLO for $t\bar{t} + X$ production
 - bin-wise matching