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Smart Background Simulation

(Introduced in PhD Thesis by James Kahn (2019))
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» Skims are centrally produced loose selections tailored to specific analysis types
- Many skims throw away large fractions of costly simulated background events
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* Event generation much faster than detector simulation and event reconstruction
(tslow/tfast ~ 100)

* Typically, no simple correlations between features after generation and final
selection criteria

* Perhaps a neural network based classifier can solve this issue?
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https://doi.org/10.5282/edoc.24013

Filtering procedure
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False negatives False positives

 False positives: unproblematic (simply lower performance)

* False negatives: problematic!
Discarded events are gone and may thus bias distributions

* Solution: importance sampling
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Importance sampling

(Introduced in Master's Thesis by Boyang Yu (2021))

|dea:
* use NN output as sampling probability p;

* weight each event by its inverse probability w;

- No bias by construction (Disadvantage: weighted events with arbitrarily high weights)

Probability Weight
Event 1 0.75 Event 1 1.33
Event 2 0.33 Event 2 3.00
Event 3 0.01 > Event 3 X
Event 4 0.06 Event 4 16.67
Event 5 0.50 Event 5 X
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https://docs.belle2.org/record/3222

Evaluation metric: speedup

* Goal: Train NN to achieve highest speedup (t,,,yn/tny) fOr the same
effective sample size

* Effective sample size:

* :=size of an unweighted sample that would yield the same relative statistical
uncertamty

* Estimate for number of expected events: Neyp = X w;
e Estimate for variance: g2

‘/N f ‘/ZLCUL N N (lel)
Nefr 2 Wi eff — lel

 Effective sample size:
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Evaluation metric: speedup

* Goal: Train NN to achieve highest speedup (t,,,yn/tny) fOr the same
effective sample size

e Speedup also depends on:

* Assumed times for generation t¢,4:, NN inference tyy and
simulation/reconstruction tg,,, (roughly trger: tyn: tsjow ~ 1 : 1 : 100)

» Skim efficiency (retention rate)
- lower retention increases potential speedup
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Evaluation metric: speedup

Speedup = tyonn/tnn

Define:
* t1 = trger + tyn + tsiow (events accepted by NN)
* Uy = trgst T tyn (events rejected by NN)
* U3 = trgst T Lsiow (€VENts with no NN)

Use:

* lhonn = U3 'Neff
o tyy =ty - (N7p + Npp) +t5 - (Ney + Nryy)

Some algebra later...

Pass skim Fail skim
NN accepts TP FP
NN rejects FN TN
t3/E|w;]

Speedup =
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Optimizing for speedup

Logits (pre-activation output) 1.0 9 === Sigmoid (cross entropy training)
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* Model trained with cross entropy loss and final sigmoid activation

* |dea: optimal classification probability for cross entropy should be related to
optimal sampling probability for speedup by monotonic function

= Replace sigmoid activation by fitted “skewed” sigmoid optimized for speedup
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Optimizing for speedup

* Turns out generic skewed sigmoid (1 + ae

(no uniqgue maximum)

—c(x—b))_l/a

* Tradeoff: shorter time << narrower weight distribution

has too many parameters

* Narrow weight distribution desirable = empirically leads to the following

function:

min(ea(x‘b), 1)

Two parameters:

e Scalea
o Shiftb
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Dataset

* Generator level MC particles

(hadrons, no gluons/quarks) Cres )
* List of particles with decay (5 ) 5
structure information
(mother-daughter relations) Coenw D (o) Gu) (0 ) G () (+)
* Particle features:
. (O @O OO
* 4-momentum OIOIOROIOROIOIOIO

* Production 4-vertex
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Model architecture

e Based on ParT (Particle Transformer for Jet Tagging, arxiv:2202.03772)
— State-of-the-art performance in jet tagging by pre-training on large
dataset and subsequent fine-tuning (e.g. for top tagging)

 \Very generic architecture (essentially just a transformer)

e Supports edge features:
* Adjacency matrix of decay graph
e Two-particle invariant masses and angles

* 10 layers, ~2 million parameters
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Particles =

Interactions —»

L blocks Class token

Particle
Attention
Block

Particle
Attention
Block

Particle
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Block

(Embedding) (Embedding)

(b) Particle Attention Block
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Transfer learning

* Fundamental problem:
* Training transformer requires large dataset

e But if a large dataset for a skim is already available: what do | need the model
for?

 Solution: pre-trained models!
* Two approaches:

Feature extraction: Whole model fine-tuning:
* Remove final layer and retrain only that e Start with pre-trained model but adjust all
* Perhaps even just re-fit final sigmoid parameters
activation * Perhaps reinitialize last layer (if output shape
* Only feasible for highly correlated skims changes)

* Promising results in ParT paper
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Transfer learning - Prestudy

Subset of reference Skim A Skim B

Train on 2000 events, batch size 256, Transparent: train, Solid: validation Train on 2000 events, batch size 256, Transparent: train, Solid: validation Train on 2000 events, batch size 256, Transparent: train, Solid: validation

1.4 4 —— from scratch 0.8 1 ~—— from scratch 124 —— from scratch
feature extraction (+linear layer) feature extraction (+linear layer) : feature extraction (+linear layer)
124 full finetuning 0.7 4 —— full finetuning A —— full finetuning
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* Model trained on reference skim, then fine-tuned on 2000 events of new skim

* Feature extraction works poorly, especially with low correlations between skims (A and
B)

* Training from scratch overtrains very quickly on small dataset
* Full fine-tuning looks promising, consistently yielding the best validation loss
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Large scale training

* |dea: to make flexible fine-tuning possible, pre-train model on all available
skims at once

e Currently samples for 51 centrally produced skims available
* 7 background types (useful for many analyses): ete™ - BYB~, B°R?,
qq (g=u,d,s,c), 71~

* Condition model on background type

e Dataset balanced between different types, containing ~180 million events
or ~20fb~1
* Training
e Without class weights (original)

* With class weights
* With class weights and empirical focal loss emphasizing difficult training examples
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Speedup
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Skim Efficiency

Achievable speedups correlate
with

* Separation power
(as measured by the area under
the ROC curve)

» Skim efficiency
(lower retention rates = higher
potential for speedup)
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Adaptive/Reinforcement Learning

(Introduced in Bachelor’s Thesis by Daniel Pollmann (2024))

* Another possible idea:

* Train model while producing data and
running skim

* Model becomes successively better,
producing data more efficiently

* Pro: Overall time-saving, on-the-fly
procedure in one step

e Contra: Requires implementing
training loop in Belle Il production
software
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Current work and outlook

Currently three main objectives:

* Test pre-trained model on already known skim under different data
taking conditions

* E.g. reprocessed data under a new software release or with more realistic
beam background from so-called run-dependent MC

* Fine-tune and evaluate pre-trained model on entirely new skim

* Implement model inference in Belle Il software to test model in an
actual skim production and evaluate realistic speedup
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Thank you for your attention!
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Backup
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Speedup derivation

(e Ngen)2 __t3 Ngen

2 w; 3 g2 Ngen Elw;] Elw;]

*tyy =t - (Nrp + Npp) + t5 - (Ngy + Npy) = tg - Nyep, (€ frp +

(1 —¢€) frp) + tz - Ngen (€ frn + (1 — &) frn)

t3/E|w;]
(efrp+ Q=€) frp) ty + (efpn + (1 —2) fry) L,

Speedup =
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Hyperparameters

* Largely based on ParT:
» 8 self attention blocks
2 class attention blocks
* 8 heads per multi-head attention block
* Embedding size 128
— Roughly 2 million parameters

* Differences:
* Fewer norm layers
 Embeddings for PDG ID and background type
* Using 3 pair features (adjacency matrix, pair mass and angle)
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