
MadNIS and the road to MadGraph 7

[2212.06172] TH, Winterhalder, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn
[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder
[2408.01486] TH, Mattelaer, Plehn, Winterhalder

Theo Heimel
March 2025

CP3, UCLouvain

https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2311.01548
https://arxiv.org/abs/2408.01486

Introduction

2

• Event generation bottleneck: hard process

• Orthogonal approaches
→ hardware acceleration (GPU, SIMD, …)

Sherpa/Pepper: 2302.10449, 2311.06198
MadGraph: 2303.18244, 2312.02898, 2312.07440

→ fast ML surrogates [Nina’s and Tim’s talks]
Sherpa: 2109.11964, 2301.13562
MadGraph: 2412.12069

→ ML-based sampling: MadNIS
Sherpa: 2001.05486, 2001.05478, 2001.10028,
MadGraph: 2212.06172, 2311.01548, 2408.01486

• neural importance sampling
→ phase space weight available
→ exact theory prediction
→ better model = faster sampling

[CERN-LHCC-2022-005]

Outline

3

∂x
∂

7

Introduction to MadNIS

Differentiability and phase space

The road to MadGraph 7

Event generation in MadGraph

4

I = ∑
i ⟨αi(x)

f(x)
pi(x) ⟩

x∼pi(x)

MadGraph: build channels
from Feynman diagrams

Sum over channels

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Channel weights Channel mappings
MadGraph: use amplitude structure, …
Analytic mappings + refine with VEGAS

(factorized, histogram based
importance sampling)

MadGraph: dσ/dx
Integrand

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections

Event generation in MadNIS

5

MadGraph: build channels
from Feynman diagrams

Sum over channels

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Channel weights Learned channel mappings
MadGraph: use amplitude structure, …
Analytic mappings + refine with VEGAS

MadGraph: dσ/dx
Integrand

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections

refine with
Normalizing Flow

I = ∑
i ⟨αi(x)

f(x)
pω

i (x) ⟩
x∼pω

i (x)

Event generation in MadNIS

6

MadGraph: build channels
from Feynman diagrams

Sum over channels

Learned channel mappings
MadGraph: use amplitude structure, …
Analytic mappings + refine with VEGAS

MadGraph: dσ/dx
Integrand

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections

refine with
Normalizing Flow

I = ∑
i ⟨αξ

i (x)
f(x)

pω
i (x) ⟩

x∼pω
i (x)

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Learned channel weights

αi(x) → αξ
i (x) = αMG

i (x) ⋅ Kξ
i (x)

parametrize with NN

Neural Importance Sampling

7

Co
up

lin
g

Bl
oc

k

Co
up

lin
g

Bl
oc

k

Co
up

lin
g

Bl
oc

k

Unit hypercube

Phase space

xi ∼ dΦn

Unit hypercube

z ∼ unif

Analytic
Channel

Mappings
xi = hi(yi)

yi ∼ gi(y)

Normalizing Flow

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478] [Winterhalder et al, 2112.09145]

Learnable, invertible transformation
with tractable Jacobian:

Rational Quadratic Spline coupling block
[Durkan et al, 1906.04032]

MADNIS: Neural Importance Sampling

8

Conditional SplittingLatent space z

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel
mapping 1

Analytic channel
mapping 2

Analytic channel
mapping k

 Φ ⊆ ℝN
Phase space

U = [0,1]N

Unit hypercube

⟨α2(x′￼)
f(x′￼)
g2(x′￼) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′￼′￼)
f(x′￼′￼)
gk(x′￼′￼) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

Combination of
 channelsk

Overview

9

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

LHC processes

10

1. Excellent results by combining all improvements!
2. Even larger improvements for process with large interference terms

1.0

1.5

2.0

2.5

3.0

re
la

tiv
e

st
d

de
v

æ
/I

gg ! W+dūg (@13 TeV)

VE
G

A
S

fix
ed

Æ

tr
ai

ne
d

Æ

VE
G

A
S-

in
it

fix
ed

Æ
VE

G
A

S-
in

it
tr

ai
ne

d
Æ

st
ra

tifi
ed

fix
ed

Æ
st

ra
tifi

ed
tr

ai
ne

d
Æ

C
ha

nn
el

dr
op

pi
ng

bu
ff

er
ed

R
@

=
3

bu
ff

er
ed

R
@

=
5

2.5

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

5

10

15

20

un
w

ei
gh

tin
g

ef
fic

ie
nc

y
≤
[%

]

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e

st
d

de
v

æ
/I

uc ! W+W+ds (@13 TeV)

VE
G

A
S

fix
ed

Æ

tr
ai

ne
d

Æ

VE
G

A
S-

in
it

fix
ed

Æ
VE

G
A

S-
in

it
tr

ai
ne

d
Æ

st
ra

tifi
ed

fix
ed

Æ
st

ra
tifi

ed
tr

ai
ne

d
Æ

C
ha

nn
el

dr
op

pi
ng

bu
ff

er
ed

R
@

=
3

bu
ff

er
ed

R
@

=
5

5

10

15

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

5

10

15

20

un
w

ei
gh

tin
g

ef
fic

ie
nc

y
≤
[%

]

1

2

M
G5

Scaling with multiplicity

11

Large improvements compared to VEGAS even
for high multiplicities and many channels!

384 channels, 108 symm.

7x better than VEGAS

gg → W+dūgg
945 channels, 119 symm.

5x better than VEGAS

gg → tt̄ggg

0.75

1.00

1.25

1.50

re
ls

td
de

v
æ
/I

gg ! W+dū . . . (@13 TeV)

W+2j W+3j W+4j
2.5

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S 0

20

40

60

un
w

ef
f≤

[%
]

0.50

0.75

1.00

1.25

re
ls

td
de

v
æ
/I

gg ! tt̄g . . . (@13 TeV)

t̄t+1j t̄t+2j t̄t+3j

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S 0

20

40

un
w

ef
f≤

[%
]

Standalone Python module

12

• Released MadNIS as a Python package
→ apply to your own integration tasks

• From simple single-channel integrals
to complex multi-channel setups

https://madnis.ai/
pip install madnis

https://madnis.ai/

Outline

13

∂x
∂

7

Introduction to MadNIS

Differentiability and phase space

The road to MadGraph 7

• Standard construction of PS-mappings
from Feynman diagrams

• Phase space library based on PyTorch

• Fully differentiable + invertible
→ can build in trainable components
→ include in MadNIS training

SciPost Physics Submission

g (p1)

g (p2)

g (k1)
ū (k2)

g (k3)

W+ (k4)
d (k5)

t1

t2
s2

s1

k1

k2

k3

k4
k5

p = p1 + p2

k1234
k234

k23

Figure 8: An example Feynman diagram contributing to the gg→ W+ūdgg process
(left) and an illustration of the corresponding phase-space parametrization (right).

RKL Loss

For the expectation value of the gradient, we obtain for both directions

↑ωLfw
RKL =↑ωLinv

RKL =
ω2 ↓ 1
ω

. (65)

While for the variance of the gradient, we obtain

Var
!
↑ωLfw

RKL

"
=

21↓ 54ω2 + 37ω4 + 4 log(ω) (3↓ 5ω2 + logω)
2ω2

(66)

Var
!
↑ωLinv

RKL

"
= 2ω2 . (67)

In Fig. 7, we illustrate the gradient variances for the forward and inverse training for the
different loss functions. The upper panels show the absolute gradient variance, while the
lower panel shows the ratio between the forward and inverse directions. A ratio of r > 1
means the gradient variance of the forward training is larger than the gradient variance of the
inverse training. For the variance loss and KL divergence, we can observe that the forward
training yields the more stable training. Only in parameter regions around the optimal value,
i.e. ω ↔ ωopt = 1 the inverse training is more stable. In contrast, for the RKL divergence, the
picture changes and the inverse loss gives less noisy gradients.

C Explicit channel mapping

As an example, we consider W+ 4 jets production

gg→W+ūdgg . (68)

In particular, we investigate the Feynman diagram of Fig. 8, because it involves all types of
phase-space blocks introduced in Sec. 4. We define

k23 = k2 + k3 k234 = k2 + k3 + k4 k1234 = k1 + k2 + k3 + k4

q1 = p1 ↓ k1 q2 = p2 ↓ k5 p = p1 + p2 .
(69)

The infrared and collinear singularities are excluded by a lower cut on k2
23 > k2

23,min. The
phase-space integral

∫
dω2→5
$$
Fig.8 =

ŝ∫

k2
23,min

dk2
23

ŝ∫

k2
23

dk2
234

ŝ∫

k2
234

dk2
234

∫
dω2→2(p1, p2; k2

1234, k2
5)

↗
∫

dω2→2(p1, q2; k2
1, k2

234)
∫

dω1→2(k234; k2
23, k2

4)
∫

dω1→2(k23; k2
2, k2

3) .

(70)

21

MadNIS-Lite

14

SciPost Physics Submission

PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition

t1

x1
x2

t�

t2
d�1�2

d�1�2d�1�2

s4

s1

s2

s3 d�1�2

d�1�2

d�1�2

si d�1�2d�1�2

Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.

12

Example:
W+jets

Trainable components

15

SciPost Physics Submission

PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition

t1

x1
x2

t�

t2
d�1�2

d�1�2d�1�2

s4

s1

s2

s3 d�1�2

d�1�2

d�1�2

si d�1�2d�1�2

Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.

12

• Add small trainable components
based on RQ spline transformations

• Condition on context
→ COM energy, decay energy, …

• Tiny number of parameter: shared
→ between all components of same type
→ between all channels

mapping +VEGAS mapping +VEGAS
0.0

0.5

1.0

1.5

im
pr

ov
em

en
t

w
rt

.
V

E
G

A
S W+3j

not trained trained on W+3j

rel. std. dev.

unw. eÆ.

Performance

16

• good performance even though no channel-specific training

• trained for n jets, used for n+1 jets → performance like VEGAS

• further improvements for VEGAS trained on top of MadNIS-Lite

①

①

②

mapping +VEGAS mapping +VEGAS mapping +VEGAS
0.0

0.5

1.0

1.5

2.0

im
pr

ov
em

en
t

w
rt

.
V

E
G

A
S W+4j

not trained trained on W+3j trained on W+4j

rel. std. dev.

unw. eÆ.

②

Interpretability

17

SciPost Physics Submission

0.00 0.25 0.50 0.75 1.00
mapping input

0.0

0.2

0.4

0.6

0.8

1.0
m

ap
pi

ng
ou

tp
ut

z s

0.013

0.035

0.057

0.079

0.102

0.124

co
nd

it
io

n
�

ŝ/
s l

ab

0.00 0.25 0.50 0.75 1.00
mapping input

0.0

0.2

0.4

0.6

0.8

1.0

m
ap

pi
ng

ou
tp

ut
z t

0.002

0.023

0.044

0.064

0.085

0.106

co
nd

it
io

n
�

p2
/s

la
b

Figure 6: Mappings learned by the bilinear spline flow for W+3 jets. Left panel:
Learned mapping for the time-like invariant for massless propagators, conditional
on the partonic CM energy

p
ŝ. Right panel: Learned mapping for the t-invariant in

2! 2 scatterings, conditional on the scattering CM energy
p

p2.

our trained mapping with VEGAS, we achieve the best performance in the W+3 jets scenario,
with an improvement factor of up to 1.5. For the t̄t+ 2 jets scenario in the upper right plot,
the story is the same.

Next, we consider the same processes but with an additional jet in the final state. The re-
sults for different scenarios are shown in the lower two plots in Fig. 5. Again, we consider the
mapping that has been trained on the W+3 jets process and evaluate it on the W+4 jets process
without further training. We find that the pre-trained mappings are very close in performance
to the VEGAS benchmark, without any specific optimization on the W + 4 jets process. Like
before, when additionally combining with VEGAS we outperform our untrained phase-space
mappings. If we directly train our mappings on W + 4 jets, we immediately outperform our
untrained benchmark mappings even without further optimizing with VEGAS. When combin-
ing the trained mappings with an additional VEGAS optimization, we achieve an improvement
factor of up to 2 for the W+ 4 jets process.

Again, when turning to the t̄t+ 3 jets scenario, we observe the same behavior. This indi-
cates that our trainable mappings work well and are capable of generalizing from one process
to another process with an additional final state jet. This means our trainable bilinear flow
represents the smallest foundation model possible. We note that going even one step further
by pre-training our bilinear flows on W+2 jets and t̄t+1 jets, respectively, does not generalize
well to higher multiplicities as these low-multiplicity processes are too simple to encode all
the necessary information.

Explainability

Another benefit of using our bilinear-flow-enhanced mappings is the possibility to understand
and interpret the learned correlations. As an example, we consider the learned transformation
for the W+3 jets process in Fig. 6. Both plots show a learned transformation of an input of one
of the phase-space blocks conditioned on some physical features relevant to that component.
In the left panel of Fig. 6, we consider the learned transformation for a massless propagator
conditional on the partonic CM energy

p
ŝ. We can see that the overall shape of the mapping

deviates from the flat mapping, being slightly bulged upwards. This means that our fixed
choice of ⌫= 1.4 was slightly too large, indicating stronger pole cancellations in the collinear
limit. Further, the mapping tends to avoid zs < 0.2 and hence avoiding to sample the smin

15

Massless propagator
s-invariant

2→2 scattering
t-invariant

• s-invariant: small energy-dependence, easily learned by VEGAS,
still room for improvement in underlying mapping

• t-invariant: large dependence on p2

madevent7 phase space library

18

• New phase space library based on code developed for MadNIS lite

• written in C++/CUDA
→ use SIMD vectorization on CPUs
→ massive parallelization on GPUs

• supported so far:
→ topology-based mappings similar to MG5
→ RAMBO on diet [Plätzer, 1308.2922]
→ CHILI [Bothmann et al., 2302.10449]

• modular structure: easy to incorporate new ideas for phase space

madevent7 phase space library

19

import madevent7 as me
import numpy as np
diagram = me.Diagram(
 incoming_masses=[0., 0.],
 outgoing_masses=[0., 0., 0.],
 propagators=[me.Propagator(91.188, 2.4955),

 me.Propagator(0., 0.)],
 vertices=[["i0", "i1", "p0"],
 ["p0", "o0", "p1"],
 ["p1", "o1", "o2"]],
)
topology = me.Topology(diagram, me.Topology.all_decays)
mapping = me.PhaseSpaceMapping(topology, 13000.**2)
r = np.random.rand(100000, 7)
(momenta, x1, x2), jac_det = mapping.map_forward([r])

Build a phase space sampler
in 15 lines of Python!

• Full functionality also available through Python interface

• Accepts inputs from PyTorch, Numpy, …

Outline

20

∂x
∂

7

Introduction to MadNIS

Differentiability and phase space

The road to MadGraph 7

Building MadNIS into MadGraph

21

Survey
(VEGAS)

Combine
channels,

write events

Refine VEGAS grids
Generate events

MadNIS
training

Generate
events

Simplify
multi-

channel

Standard MadEvent pipeline

MadNIS pipeline

Example process: gg → ttgg

22

(p
re

lim
in

ar
y)

105 107 109

generated events

103

104

#
tr

ai
n
in

g
it
er

at
io

n
s

0

2

4

6

8

sp
ee

d
-u

p

103 104

training iterations

0

5

10

15

20

ge
n
er

at
io

n
C

P
U

ti
m

e
[m

in
]

gg ! tt̄gg
100k unweighted events

MG5

MadNIS

MadNIS is faster starting at 100k events!

Remaining challenges

23

Survey
(VEGAS)

Combine
channels,

write events

Refine VEGAS grids
Generate events

MadNIS
training

Generate
events

Simplify
multi-

channel

Ideally, no tuning should be needed most of the time!
Main challenge: finding smart defaults and heuristics

When to use VEGAS?
When to use MadNIS?

Which channels to keep?
Flat overflow channel?

Ratio between new
and buffered

training samples?

When to stop the training?

Upcoming MadGraph7

24

7
Release planned for

the end of 2025!

MadNIS

• neural importance sampling
automatically used
for most processes

• smart defaults:
as easy to use as VEGAS

MadEvent7

• new modular phase
space generator

• GPU- and ML-enabled
• usable beyond MadGraph

Matrix element on GPU

• huge speed-up from
moving to GPU

• improved CPU performance
from SIMD vectorization

Faster multi-jet events

• color-aware generator
accelerates sampling
high-multiplicity processes
[2409.12128]

Conclusions

25

• MadNIS: improvements in unweighting efficiency for various
realistic LHC examples

• MadNIS-Lite: middle ground between VEGAS and MadNIS
→ generalizes from n jets to n+1 jets
→ interpretability to improve phase space mappings

• Speed-up already for low numbers of generated events

• Ongoing work towards MadNIS@NLO

• MadNIS will be an integral part of upcoming MadGraph 7!

Appendix

26

Neural Channel Weights

27

Channel WeightPhase space

x ∼ dΦ

Fu
lly

 c
on

ne
ct

ed

Fu
lly

 c
on

ne
ct

ed

Re
si

du
al

 B
lo

ck

Prior Channel Weights

Residual Block

Add prior

Normalization

 αiθ = βi(x) exp Δiθ(x)

αiθ(x) → α̂iθ(x) =
exp Δiθ(x)

∑j exp Δiθ(x)
βi(x)

βj(x)

βi(x) =
∣Mi(x) ∣2

∑j ∣Mj(x) ∣2

αiθ(x)

Normalizing Flows 6Conditional Invertible Neural Networks
• chain of learnable, invertible transformations with tractable Jacobian

[Ardizzone et al., 1907.02392]
• Train network by maximizing log-likelihood for training dataset

logp(zn) = logp(z1) + log det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling

Chain of invertible, learnable transformations with
exact likelihood from change of variables formula

log p(zn |c) = log p(z1) + log det
∂z1(zn; c)

∂zn

28Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

Loss function

29

σ2
i = Var (αi(x)

f(x)
gi(x))

x∼gi(x)

Ni = N
σi

∑k σk

σ2
tot = N∑

i

σ2
i

Ni

ℒ = σ2
tot = ∑

i,k

σi σk

with

Training objective:
Minimize total variance

Optimal MC weights depend on
↓

assume choice of during training:
use stratified sampling

Ni

Ni

MadNIS loss function

Buffered Training

30

Buffered samples

x, qφ̂(x), f(x)
Weighted Loss

L(f(x), gφ(x) ∣ wφ(x))

Density wφ(x) =
gφ(x)
qφ̂(x)

Buffered training

gφ(x)

G(x |φ)

gφ(x) φ→φ̂ qφ̂(x)

Sample
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

G(x |φ)

gφ(x)

L(f(x), gφ(x))

Online training

Buffered Training

31

1 2 3 4 5 6
reduction in training statistics R@

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

ch
an

ge
in

tr
ai

ni
ng

tim
e

t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm

generate new samples, train on them,
save samples

↓
train on saved samples times

↓
repeat

n

Reduction in training statistics by

R@ = n + 1

VEGAS algorithm

32

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap

⊖ High-dim and rich peaking functions
→ slow convergence

⊖ Peaks not aligned with grid axes
→ phantom peaks

Fit bins with equal probability
and varying width

[G. P. Lepage, 1978]

VEGAS Initialization

33

y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

Initialization

Bin reduction

VEGAS gridVEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

Differentiable MadNIS

34Latent space z

Analytic Channel
mapping

 Φ ⊆ ℝN
Phase space

Normalizing
Flow

U = [0,1]N

Unit hypercube

dσ
dΦ

=
1

flux
f(xa) f(xb) ⟨ ∣Mλ,c,…(pa, pb ∣ p1, …, pn) ∣2 ⟩

Fully differentiable MadGraph using PyTorch

Based on previous implementations in Jax and TF:
PDFFlow [2009.06635], MadFlow [2106.10279],
MadJax [2203.00057]

Differentiable
phase space

Differentiable
parton densities

Differentiable
 matrix elements

MadNIS Training

35

Sample
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

gφ(x)

L(f(x), gφ(x))

Inverse loss

Only possible with
differentiable integrand

Linv
F = ⟨F(f(Gθ(z))

gθ(z))⟩
z∼p0(z)

Forward loss

Regular MadNIS training

Lfw
F = ⟨ gθ(x)

q(x)
F(f(x)

gθ(x))⟩
x∼q(x)

Arbitrary f-divergence: KL, RKL, variance

Example process

36

SciPost Physics Submission

0.0 0.1 0.2 0.3 0.4 0.5
relative contribution Ii/I

8

7

6

4

5

3

2

1

ch
an

ne
li

gg � W+dū (@13 TeV)

MG5
MadNIS
dropped

0.0 0.1 0.2 0.3
relative contribution Ii/I

46
45
42
41
36
35
34
33
30
29
26
25
16
15
14
13
12
11
10
9
7
3
2
1

ch
an

ne
lg

ro
up

i

gg � W+dūg (@13 TeV)

MG5
MadNIS
dropped

0.0 0.2 0.4 0.6 0.8 1.0
relative contribution Ii/I

28

27

25

22

21

19

17

14

13

6

5

4

3

2

1

ch
an

ne
lg

ro
up

i

uc � W+W+ds (@13 TeV)

MG5
MadNIS
dropped

0.0 0.1 0.2 0.3 0.4 0.5
relative contribution Ii/I

16

14

15

13

12

9

11

8

10

7

6

3

5

2

4

1

ch
an

ne
li

ud̄ � W+W+W� (@13 TeV)

MG5
MadNIS
dropped

Figure 3: Relative contributions of the channels for W+2jets and Triple-W production, and for
the channel groups for W+3jets and VBS. The channel weights are defined by MG5AMC, their
weights are learned by MADNIS. An empty circle indicates a dropped channel.

the group.

In Fig. 3, we show the contribution of MADNIS channels or channel groups, compared to
the initial MG5AMC assignments. We mark dropped channels with empty circles, the number
of remaining active channels corresponds to Tab. 1. We see that MADNIS prefers much fewer
channels, illustrating the benefit of our channel dropping feature.

For VBS and Triple-W production, MADNIS adapts the channel weights in a way that the
integrand is almost completely made up from a single group of symmetry-related channels.
The general behaviour and the specific choice of channels is consistent between repetitions
of the training. The Feynman diagrams corresponding to these channels are shown in Fig. 4.
For VBS five channel groups significantly contribute to the integral in MG5AMC, all of them
with a t-channel gluon or photon. Of those, MADNIS enhances the QCD contribution O(ω2

sω
2)

without an s-channel quark propagator. For Triple-W production, one channel group already
dominates the integral in MG5AMC, and it is further enhanced by MADNIS. We give an example
for the distribution learned by the learned channel weights as a function of phase space in
Appendix B.

13

• Example process:

• Last MadNIS paper:
single channel is sufficient

• Flat, differentiable phase space
using RAMBO on diet

ud → W+W+W−SciPost Physics Submission

c

u

W+

s

d

W+

g

d̄

u

W+

W+

W≠

Z

Figure 4: Feynman diagrams corresponding to the dominant channels after training MADNIS
for VBS (left) and Triple-W production (right).

3.4 Scaling with jet multiplicity

The last challenge of modern event generation MADNIS needs to meet is large number of
additional jets. We study the scaling of the MADNIS performance with the number of gluons in
the final state for W+jets and t̄t+jets production. Again, we use the relative standard deviation
ω/I and the unweighting efficiency ϵ as performance metrics. As for the final result in Fig. 2,
we train MADNIS with all features, including buffered training with R@ = 5. The results are
shown in Fig. 5. While the unweighting efficiency decreases and standard deviation increases
towards higher multiplicities, the gain over VEGAS and MG5AMC remains roughly constant for
W+jets production. For the even more challenging t̄t+jets production the gain decreases for
three jets, defining a remaining task for the final, public release of MADNIS.

4 Outlook

We have, for the first time, shown that modern machine learning leads to a significant speed
gain in MG5AMC. We have improved the MADNIS method [20] and implemented it in MG5AMC,
to be able to quantify the performance gain from a modern ML-treatment of phase space sam-
pling. This implementation will allow us to use the entire MG5AMC functionality while devel-
oping an ultra-fast event generator for the HL-LHC.

Starting from a combined training of a learnable phase space mapping encoded in an INN
and learnable channel weights encoded in a simple regression network, we have added a series

0.75

1.00

1.25

1.50

re
ls

td
de

v
�
/I

gg � W+dū . . . (@13 TeV)

W+2j W+3j W+4j

2.5

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

20

40

60

un
w

ef
f�

[%
]

0.50

0.75

1.00

1.25

re
ls

td
de

v
�
/I

gg � tt̄g . . . (@13 TeV)

t̄t+1j t̄t+2j t̄t+3j

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

20

40

un
w

ef
f�

[%
]

Figure 5: Relative standard deviation and unweighting efficiency for W+jets and t̄t+jets with
different numbers of gluons in the final state. The final MADNIS performance gain is illustrated
in the lower panels, just as in Fig. 2.

14

Forward vs inverse loss

37

SciPost Physics Submission

variance KL RKL
0.3

0.4

0.5

0.6

0.7

0.8

st
an

da
rd

de
vi

at
io

n

forward

inverse

variance KL RKL
6

8

10

12

14

16

un
w

ei
gh

ti
ng

e�
ci

en
cy

[%
] forward

inverse

Figure 2: Relative standard deviations (left) and unweighting efficiencies (right) for
different loss functions.

RKL losses used for forward training lead to similar results, but the KL-divergence outperforms
them. Also, in terms of unweighting efficiency, forward training with a KL-loss leads to the
best results. The fact that RKL gives the worst unweighting efficiency is related to overweights,
which the RKL does not penalize. This comparison has to be taken with a grain of salt, because
the performance of forward training based on the variance and the KL-divergence are close
in performance. An additional aspect we have to factor in is that a multi-channel loss can
only be constructed using the variance, whereas the KL-divergence might be most suitable for
single-channel integrals.

Additional derivatives

When using differentiable integrands, we can also evaluate an additional derivative matching
term (also called score or force matching [99]) for each forward loss introduced above,

Lfw! Lfw +�
⌦
|@x log f (x)� @x log g✓ (x)|2

↵
x⇠q(x) . (30)

The relative strength of the derivative term, �, is a hyperparameter. In Fig. 3, we show the
same triple-W results as in Fig. 2, but including derivative matching with different strengths
�. For the variance and RKL losses, we see slight improvements in the results from the deriva-
tive matching. However, it turns out that it comes with less stable training. Altogether, the

0 10�5 10�4 10�3

score matching �

0.35

0.40

0.45

0.50

0.55

st
an

da
rd

de
vi

at
io

n

variance KL RKL

0 10�5 10�4 10�3

score matching �

10

12

14

16

un
w

ei
gh

ti
ng

e�
ci

en
cy

[%
] variance KL RKL

Figure 3: Relative standard deviations (left) and unweighting efficiencies (right) for
different derivative matching coefficients.

8

• forward losses perform better than inverse losses

• Side result: KL performs better than variance,
however not compatible with trainable channel mappings

be
tt

er
better

Derivative matching loss

38

SciPost Physics Submission

variance KL RKL
0.3

0.4

0.5

0.6

0.7

0.8

st
an

da
rd

de
vi

at
io

n

forward

inverse

variance KL RKL
6

8

10

12

14

16

un
w

ei
gh

ti
ng

e�
ci

en
cy

[%
] forward

inverse

Figure 2: Relative standard deviations (left) and unweighting efficiencies (right) for
different loss functions.

RKL losses used for forward training lead to similar results, but the KL-divergence outperforms
them. Also, in terms of unweighting efficiency, forward training with a KL-loss leads to the
best results. The fact that RKL gives the worst unweighting efficiency is related to overweights,
which the RKL does not penalize. This comparison has to be taken with a grain of salt, because
the performance of forward training based on the variance and the KL-divergence are close
in performance. An additional aspect we have to factor in is that a multi-channel loss can
only be constructed using the variance, whereas the KL-divergence might be most suitable for
single-channel integrals.

Additional derivatives

When using differentiable integrands, we can also evaluate an additional derivative matching
term (also called score or force matching [99]) for each forward loss introduced above,

Lfw! Lfw +�
⌦
|@x log f (x)� @x log g✓ (x)|2

↵
x⇠q(x) . (30)

The relative strength of the derivative term, �, is a hyperparameter. In Fig. 3, we show the
same triple-W results as in Fig. 2, but including derivative matching with different strengths
�. For the variance and RKL losses, we see slight improvements in the results from the deriva-
tive matching. However, it turns out that it comes with less stable training. Altogether, the

0 10�5 10�4 10�3

score matching �

0.35

0.40

0.45

0.50

0.55

st
an

da
rd

de
vi

at
io

n

variance KL RKL

0 10�5 10�4 10�3

score matching �

10

12

14

16

un
w

ei
gh

ti
ng

e�
ci

en
cy

[%
] variance KL RKL

Figure 3: Relative standard deviations (left) and unweighting efficiencies (right) for
different derivative matching coefficients.

8

• Alternative use for gradients: derivative matching loss

• Sometimes small improvements over normal forward loss
• Additional cost of gradient evaluation not amortized

Lfw → Lfw + λ ⟨ |∂x log f(x) − ∂x log gθ(x) |2 ⟩x∼q(x)

better
be

tt
er

Learned channel weights

39

MadNIS often sends weight of many channels to 0
↓

dropping channels makes training and
event generation more stable and efficient

0.0 0.1 0.2 0.3
relative contribution Ai

46
45
42
41
36
35
34
33
30
29
26
25
16
15
14
13
12
11
10
9
7
3
2
1

ch
an

ne
lg

ro
up

gg ! W+dūg (@13 TeV)

MG5
MadNIS
dropped

0.00 0.25 0.50 0.75 1.00
relative contribution Ai

28

27

25

22

21

19

17

14

13

6

5

4

3

2

1

ch
an

ne
lg

ro
up

uc ! W+W+ds (@13 TeV)

MG5
MadNIS
dropped

Trainable components

40

SciPost Physics Submission

PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition

t1

x1
x2

t�

t2
d�1�2

d�1�2d�1�2

s4

s1

s2

s3 d�1�2

d�1�2

d�1�2

si d�1�2d�1�2

Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.

12

SciPost Physics Submission

c can be written as

z = G(x; W ĉ) with ĉ =

0
@

1
ci

ci c j

1
A for i  j , (49)

where G is a rational quadratic spline transformation and W is a trainable matrix. The number
of trainable parameters for such a transformation with nb bins is

dW = (3nb + 1)⇥ dx ⇥
Å

1+ dc +
1
2

dc(dc + 1)
ã

. (50)

This way, we can build small and fast, but sufficiently expressive trainable transformations for
a small number of dimensions dx and dc . Another benefit is the interpretability of bilinear
spline flows because W tells us how strongly the spline transformation is correlated with the
conditional inputs.

We can combine these trainable mappings with the propagator, decay, scattering, and PDF
blocks introduced above and use them to transform their uniform random number input. For
mappings with two random numbers, we allow for correlations between the two dimensions.
Because all parts of the phase-space mappings are differentiable, the bilinear flow can even be
conditional on intermediate physical features that are available only during the evaluation of
the phase-space mapping. This enhances the expressivity and interpretability of the learned
transformation.

Implementation

We implement the trainable bilinear spline flows with 6 spline bins. We list the trainable com-
ponents of the phase space mappings, the conditional features, and the number of trainable
parameters in Tab. 1. These parameters are shared between channels and multiple instances
of the same block in one channel. This way, the number of trainable parameters stays the same
for different processes and allows the use of mappings trained on one process, like W+3 jets,

Mapping Parameters Conditions

Time-like invariants, Eqs.(39),(40) 190 partonic CM energy
p

ŝ/slab

(separate for massless and minimal decay CM energy
p

smin/slab

massive propagators) maximal decay CM energy
p

smax/slab

2! 2 scattering, Eq.(43) 798 correlations between zt , z�
partonic CM energy

p
ŝ/slab

scattering CM energy
p

p2/slab

virtualities
q

k2
1,2/slab

Time-like invariants for 190 partonic CM energy
p

ŝ/slab

pseudo-particles, Eq.(45) minimal energy
p

smin/slab

maximal energy
p

smax/slab

1! 2 decay, Eq.(46) 380 correlations between z✓ , z�
partonic CM energy

p
ŝ/slab

decay CM energy
p

p2/slab

PDF convolutions, Eq.(48) 114 correlations between z⌧, zx1

Table 1: Trainable components

13

Total: 1672 parameters

