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Introduction

* Event generation bottleneck: hard process

 Orthogonal approaches

ATLAS Preliminary

2022 Computing Model - CPU: 2031, Conservative R&D - hardwa e aCcel_e ratiOn (G PU, SIM D, )

24%

Tok: 33.5 Mr3007Y Sherpa/Pepper: 230210449, 2311.06198
MadGraph: 2303.18244, 2312.02898, 2312.07440

- fast ML su rrOgateS [Nina’s and Tim’s talks]
- oA Prok Sherpa: 2109.11964, 2301.13562

go, WM MC-Full(Sim)

MC-Full(Rec) N\adGraph: 2412120069

. MC-Fast(Sim)

s MC-Fast(Rec) - - . .
e ML-based sampling: MadNIS

7%

8%

i s Sherpa: 2001.05486, 2001.05478, 200110028,
= azt?)Dériv MadGraph: 2212.06172, 2311.01548, 2408.01486
" e neural importance sampling
[CERN-LHCC-2022-005] - phase space weight available

- exact theory prediction
- better model = faster sampling
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Event generation in MadGraph

Calculate (differential) cross sections

do = —
flu

Sum over channels Integrand

MadGraph: build channels MadGraph: do/dx
from Feynman diagrams

Channel weights \ Channel mappings
MadGraph: (xiMG(x) ~ | M, |? MadGraph: use amplitude structure, ...

Analytic mappings + refine with VEGAS
(factorized, histogram based

importance sampling)
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Event generation in MadNIS

Calculate (differential) cross sections

do = —
flu

Sum over channels Integrand

MadGraph: build channels MadGraph: do/dx
from Feynman diagrams

i .
Learned channel weights Learned channel mappings
MadGraph: al.MG(x) ~ | M, E MadGraph: use amplitude structure, ...
Analytic mappings + fefrre-with-\fE6AS-

a(x) = as(x) = aMO(x) - K*(x)
| refine with
parametrize with NN —T

Normalizing Flow .



Neural Importance Sampling

Unit hypercube
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Learnable, invertible transformation

with tractable Jacobian:

Rational Quadratic Spline coupling block



MADNIS: Neural Importance Sampling

Learned channel
weights o (x)

Phase space
® C RY

Normalizing Normalizing Normalizing Combination of
Flow 1 Flow 2 Flow k k channels

Unit hypercube
U =1[0,11"

Latent space 7 @

~ .
----------------------------------------------------------------------------------------------------------------------------------------



Overview

Basic functionality Improved Multichanneling

Neural Stratified Symmetries

Normalizing % :
Channel - ey | Sampling/ between
Weights Flow Mad N IS tralpning channels

MadGraph MadEvent
matrix channel
elements mappings

Removing Partial weight
channels buffering

Improved training

. . VEGAS Buffered Surrogate
Initialization training Integrand
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1. Excellent results by combining all improvements!
2. Even larger improvements for process with large interference terms
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Scaling with multiplicity

go — Wtdu... (@13 TeV)

go — ttg... (@13 TeV)
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W+2j W+3j W+4j tt+1j tt+2j tt+3j
_|_ —_— —_—
gg — Wrdigg gg — ttggg

945 channels, 119 symm.
5x better than VEGAS

384 channels, 108 symm.
/X better than VEGAS

Large Improvements compared to VEGAS even

for high multiplicities and many channels!
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Standalone Python module

7MadNIS  First steps o

a¥Search This tutorial demonstrates how MadNIS can be used to integrate functions. As an example, we will use
the function

USAGE ;

Installation f(:l,‘) _ H21‘i '
 Released MadNIS as a Python package

Al R T e It's integral over the unit hypercube [0, 1]% is always 1, independent of the number of dimensions d.

Integration settings

o ()
a l t t t t I Using the MadNIS flow library Minimal example
a p p y O y O u r O W n I n e g ra I O n a S (S Let's compute the integral in four dimensions. This can be done with the following code ‘

REFERENCE

°
N 8- +- 0 n o
madnis.integrator package from madnis.integrator import Integrator

madnis.nn package integrator = Integrator(lambda x: (2#x).prod(dim=1), dims=4) I |~ Insights 2 Settings
integrator.train(100) |

result, error = integrator.integral() | % Fork 0 & star 5
c | 4 or v ar -

print(f"Integration result: {result:.5f} +- {error:.5f}") |
[ ] o Y |
We first create an Integrator object with our integrand and its dimension. Then we have to train the About =
. r O m S I m l e S I n l e — C h a n n e l I n t e ra lS integrator for 100 iterations. Lastly, we use combine the information over the integral collected during
the training and print the integral and the Monte Carlo integration error in the last line. We get the Python library for neural importance
output: sampling.

o complex multi-channel setups i s o - o e

Monitoring the training progress e

To better monitor the training progress, we can also specify a callback function that is called with a

Activity

Custom properties

< O ¢ 3B

TrainingStatus object after every tenth iteration. 5 stars
1 watching
integrator = Integrator(lambda x: (2*x).prod(dim=1), dims=4) 0 forks

def callback(status):
if (status.step + 1) % 10 == 0:
rint(f"Batch {status.ste

Report repository

Releases 5
[ README.md Update README.md 2 months ago © v0.1.4 '(La(es‘)
on Nov 27, 2024
D pyproject.tom| Update version number 2 months ago
+ 4 releases
[0 README 38 MIT license /7 =
Packages

No packages published
Publish your first package

https://madnis.ai/ £MadNIS  —

u theoheimel Theo Heimel

o . z ramonpeter Ramon Winterhalder
Neural Multi-Channel Importance Sampling 3 |

pip install madnis

® pre-commit-ci[bot]

MadNIS is a Python library for neural multi-channel importance sampling based on PyTorch. Deployments 6
It will be used for Monte Carlo LHC event generation in future versions of MadGraph. This
repository provides the MadNIS code as a stand-alone library that can be applied to @ pypi 2 months ago
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MadNIS-Lite

e Standard construction of PS-mappings
from Feynman diagrams

uu-ouuuuu
?52 < u (k2) l
s 52y, Example:
5 W+jets
" W (ka)
g (p2) T s d (ks)

 Phase space library based on PyTorch

* Fully differentiable + invertible
- can build in trainable components
- Include in MadNIS training

14



Trainable components

e Add small trainable components
based on RQ spline transformations

e Condition on context
- COM energy, decay energy, ...

e Tiny number of parameter: shared
- between all components of same type
- between all channels

15
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improvement wrt. VEGAS
- —
& -

=
-

e good performance even though no channel-specific training (1)

e trained for n jets, used for n+1 jets - performance like VEGAS @

Performance

¢ rel. std. dev. W3 .
¢ unw. eff. ++ éQ.O-

>
+ 1.5+

f g

=
@ % 1.0

3
" = 05

5

‘Q

mapping HVEGAS mapping L VEGAS 0.0

not trained

trained on W3]

¢ rel. std. dev. W+4;
¢ unw. eff. +
,, ++ +
» ¢
e

%

mapping +VEGAS mapping +VEGAS mapping +VEGAS

not trained trained on W+3j  trained on W+4;

e further improvements for VEGAS trained on top of MadNIS-Lite
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Interpretability

Massless propagator 22 scattering
S-Invariant t-invariant

1.0 0.124 1.0 0.106
g U8 0.102) 2 &V 0.085| 2
£06- 00795 £06- 006415
o e & P 0.044 2
£ 04- 0.057 £ £ 04- 0.044 -2
) = ) =
= = < -
= 0.2 0.035 ©  F 0.023 S

00 | | | 0.013 00l —= = 0.002

0.00 025 050 0.75  1.00 0.00 0.25 050 0.75  1.00
mapping mput mapping mput

e s-invariant: small energy-dependence, easily learned by VEGAS,
still room for Improvement in underlying mapping

e t-Invariant: large dependence on p2

1/



madevent7 phase space library

 New phase space library based on code developed for MadNIS lite

o written in C++/CUDA
- use SIMD vectorization on CPUs
- massive parallelization on GPUs

e supported so far:
- topology-based mappings similar to MG5
- RAMBO on diet |Platzer, 1308.2922]
- CHILI [Bothmann et al., 2302.10449]

 modular structure: easy to incorporate new ideas for phase space

18



madevent7 phase space library

e Full functionality also available through Python interface

e Accepts inputs from PyTorch, Numpy, ...

tmport madevent/7 as me
tmport numpy as np

Build a phase space sampler dlagran = me.Diagran( =
: : incoming_masses=[0., 0.],
In 15 lines of Python! outqoing_masses=[0., 0., 0.],

propagators=[me.Propagator(91.188, 2.4955),
me.Propagator(0., 0.)],

Vert.-LceS=[[|l.'L®n, ||.'Ll||, ||p®||:|’
[Ilpmll, “O@", ||p1||:|’
[Ilplll, ||01||, ||02||:|:|,

)
topology = me.Topology(diagram, me.Topology.all_decays)

mapping = me.PhaseSpaceMapping(topology, 13000.*%*2)
r = np.random.rand( 100000, 7)
(momenta, x1, x2), jac_det = mapping.map_forward([r])

19
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Building MadNIS into MadGraph

Standard MadEvent pipeline

Refine VEGAS grids
Generate events
Combine

channels,

: : write events
Simplity MadNIS Generate

training events

multi-
channel

MadNIS pipeline

Al



Example process: gg - ttgg

20 -
= B
5 )
o 15- 3 10
= =
+> ® E-)*
Ej — MGH5 =
o 10 e  MadNIS El
= k=
2 S
= ° =
S 5- ° ¥ 3 -2
o | gg — tieg ° 107
100k unweighted events ®
10° 10 10° 10" 10°
# training iterations # generated events

MadNIS is faster starting at 100k events!
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Remaining challenges

Refine VEGAS grids
Generate events
Combine
channels,

: : write events
Simplity MadNIS Generate

multi- training events

channel
When to use MadNIS? Flat overflow channel? and buffered

training samples?

ldeally, no tuning should be needed most of the time!
Main challenge: finding smart defaults and heuristics

23



Upcoming MadGraph?7

Matrix element on GPU MadNIS
 huge speed-up from \ /  neural importance sampling
moving to GPU automatically used

 Improved CPU performance for most processes
from SIMD vectorization e smart defaults:

as easy to use as VEGAS

Faster multi-jet events / \» MadEvent7

 color-aware generator Release p[anned for * new modular phase
accelerates sampling space generator
high-multiplicity processes the end of 2025!  GPU- and ML-enabled

[2409.12128] e usable beyond MadGraph

24



Conclusions

* MadNIS: improvements in unweighting efficiency for various
realistic LHC examples

 MadNIS-Lite: middle ground between VEGAS and MadNIS

- generalizes from n jets to n+1 jets
- Interpretability to improve phase space mappings

 Speed-up already for low numbers of generated events

e Ongoing work towards MadNIS@NLO

* MadNIS will be an integral part of upcoming MadGraph 7!

25






Neural Channel Weights

: Residual Block D
. )
Add prior ~ Channel Weight
@)
g = [.(x) exp A 4(x) @ g A
- —» © |}— ,
Normalization = _ ale(x) y
Ajp(X) = Ajp(x) = Pi) xp Bigl) -
¢ ? 2; D) exp Aj(x) e
jorayes TR T e :
. S
” 5y = I MEOP 1
X)) = ——=————— | ;
> M)
X Y

Prior Channel Weights
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Normalizing Flows

Chain of invertible, learnable transformations with

exact likelihood from change of variables formula
071(2,5 €)

log p(z,|c) = logp(z;) + log det P
Z,

training on samples

Simple latent
distribution
(Gaussian)

density estimation
p(z1) p(za|c) p(zs]c) p(z4]c)

dist

Data

ribution

A

sampling

28



Loss function

.Trai.ning objectiye: Optimal MC weights depend on /V,
Minimize total variance ¢

2 . . . .
o; assume choice of V; during training:
oo =N) —  with or Y g g
- N, use stratified sampling

67 = Var (al—(x) /) )
gi(x)
x~g(X)

MadNIS loss function

— 2
2L =0y = Zo'iak
i,k

29



Buffered Training

Online training

Sample PS points Loss
y X L(f(x), ,(x))

““
““
.
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR

Buffered samples Weighted Loss
X, q;(%), f(x) L(f(x), 8,x) | w, () | 3

““
.

Buffered training

Density g,(X)
W, (x) = :
. 8y\X) qp(x)

30



Buffered Training

Training algorithm
| 2 1.0- fixed number of weight updates
generate new samples, train on them, 3=
save samples 203
g
. v . e — t,=1us
train on saved samples n times . f= ik
J 5 0.6- = :'O‘U’S
repeat = _ T ks
& — tf = 11INS
 0.4- ~
%‘é Cpuer = 30 s
Reduction In training statistics by 0.21 | | | | _
1 2 3 4 5 6

R =n+1 reduction in training statistics R

3



VEGAS algorithm

Factorize probability
p(x) = p(xp)---p(x,)

Fit bins with equal probability
and varying width

@ Computationally cheap

© High-dim and rich peaking functions
- slow convergence

© Peaks not aligned with grid axes
- phantom peaks

32



VEGAS Initialization

Concat

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

l RQ-Spline :
nitialization |

Correlationsé

Combine advantages: T

Pre-trained VEGAS grid as OSSNSO SOOI
starting point for flow training Split

33



Differentiable MadNIS

Phase space
® C RY

Unit hypercube
U =1[0,11"

do B 1 Y 2
5 = 7 O (M. Py | P1s s P

Anal%tailc Cihna””el <« Differentiable Differentiable Differentiable
PRINS phase space parton densities matrix elements

—V—J
Fully differentiable MadGraph using PyTorch

Normalizing
Flow

Based on previous implementations in Jax and TF:
PDFFlow [2009.06635], MadFlow [2106.10279],
MadJax [2203.00057]

Latent space 7 N



MadNIS Training

PS points Loss
x ) L(f(x), %)

Density |4
8,(X)
Forward loss Inverse loss

Regular MadNIS training Only possible with
differentiable integrand

pov = (8 pf ) g = { p( 1C
q(x) go(x) go(2)
x~q(x) z~po(z)

Arbitrary f-divergence: KL, RKL, variance

35



Example process

. Example process: ud - WTW+HW~-

ud - WIWHW- (@13 TeV)

_ W 11 ©
N e
54 O
A W_ 371 ©
64 O
=T *
u W+ %10- o—o
g5
O 119 o@
« Last MadNIS paper: 2] e
single channel is sufficient 5] o o MGS
1161 z o dropped
» Flat, differentiable phase space N v contribution 17

using RAMBO on diet
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Forward vs inverse loss

=
00

¢ forward ¢ forward

—_
&)
=)=

¢ inverse ¢ inverse

=

\"[
—_
N

standard deviation
- -)
oy )
—o—
O
unweighting efficiency [%]
= ro
+
O
O

.O L]
H
—9—

09

=
o
o)

variance KL, RKL varance KL, RKL

o forward losses perform better than inverse losses

e Side result: KL performs better than variance,
however not compatible with trainable channel mappings
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Derivative matching loss

=
U
S

¢ variance ¢ KL ¢ RKL - ¢ variance ¢ KL ¢ RKL
=16
5 0:50- - + + +
: : g
= 0.45 ! &Q::) 14- 4 |
= ¢ O S o O
= .
< | 2 5.
< 040 * + + = 1 : + +
+ D
- =
0.35 - . + = 10+ !
O ¢
0 10-° 10~ 10~ 0 10-° 10~ 10~
score matching A score matching A

o Alternative use for gradients: derivative matching loss

LN = 1%+ 4(10,log f0) - d,log g )
x~q(x

e Sometimes small improvements over normal forward loss

* Additional cost of gradient evaluation not amortized
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Learned channel weights

gg — W'dug (@13 TeV) uc - WTWtds (@13 TeV)
11 O 17 O
21 8 9 - o o
13— o 34 O
10: 8—. o 44 O
%%%- o o g" 51 O
O 111 ee o 610 o
60 151 O® 60 131 O
T 21 e ° o © 14719
S 26 - e O S 1741 e—e
c 294 O c
T 30q e o g 19 o
U 3{ ee e MGS5 Qg 217 0O e MG5
354 O® 24 0—®
36719 ° e MadNIS 1 o e MadNIS
£ oe ° o dropped 271 O o dropped
164 O® 284 O o
0.0 0.1 0.2 0.3 0.00 0.25 0.50 0.75 1.00

relative contribution A; relative contribution A;

MadNIS often sends weight of many channels to 0

J
dropping channels makes training and
event generation more stable and efficient
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Trainable components

Mapping Parameters Conditions

Time-like invariants, Egs.(39),(40) 190 partonic CM energy +/5/sy.,
(separate for massless and minimal decay CM energy /Smin/Siab
massive propagators) maximal decay CM energy 4/Smax/Siab
2 — 2 scattering, Eq.(43) 798 correlations between z, 2,

partonic CM energy +/$/sjap
scattering CM energy 1/ p2/s;.p

virtualities \/ k2 /Stab

Time-like invariants for 190 partonic CM energy +/S/si.p
pseudo-particles, Eq.(45) minimal energy /s, /Siab

maximal energy /Smax/Siab

1 — 2 decay, Eq.(46) 380 correlations between zy, 2,

partonic CM energy +/$/syap
decay CM energy +/p2/siap

PDF convolutions, Eq.(48) 114 correlations between 2., 2,

Total: 1672 parameters
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