Sampling (up to) NNLO QCD with Normalizing Flows

KISS Meeting 2025 @ LMU

Timo Janßen

Institut für Theoretische Physik, Georg-August-Universität Göttingen

with Enrico Bothmann, Max Knobbe, Rene Poncelet, Bernhard Schmitzer, Steffen Schumann and Fabian Sinz

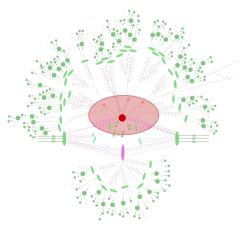
12 March 2025

GEFÖRDERT VOM

Goals

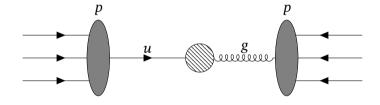
- ▶ increase unweighting efficiency in calculations relevant for LHC
- ▶ for NNLO: reduce variance of total cross section estimator
- don't introduce new systematic errors / biases
- scale to highest multiplicities relevant for LHC
- keep it simple
- → avoid cumbersome integration into existing codes with many dependencies that need to be maintained

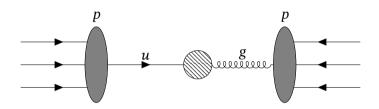
Monte Carlo event generators



hard interaction

- ▶ full-featured simulation
- from high to low energy scales
- ► hard interaction of quarks & gluons via perturbation theory
- factorize hard interaction from PDFs, parton shower, hadronization, decays, electroweak corrections, multiple interaction, ...





Hadronic cross-section:

$$\sigma(h(P_1) h(P_2) \to X) = \sum_{ab} \iint_0^1 dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$

▶ separate perturbative & non-perturbative physics

Hadronic cross-section:

$$\sigma(h(P_1) h(P_2) \to X) = \sum_{ab} \iint_0^1 dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$

separate perturbative & non-perturbative physics

Partonic cross-section:

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)} + \mathcal{O}\left(\alpha_s^{n_{(0)}} \alpha_s^3\right)$$

- can be calculated from first principles
- \triangleright $n_{(0)}$: tree-level coupling order

Hadronic cross-section:

$$\sigma(h(P_1) h(P_2) \to X) = \sum_{ab} \iint_0^1 dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$

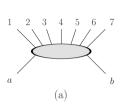
Partonic cross-section:

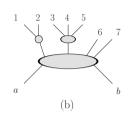
$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)} + \mathcal{O}\left(\alpha_s^{n_{(0)}}\alpha_s^3\right)$$

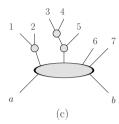
Leading Order (LO) cross-section:

$$\begin{split} \hat{\sigma}_{ab}^{(0)}(x_1 P_1, x_2 P_2) &= \frac{1}{2E_1 E_2 |v_1 - v_2|} \int \left(\prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right) \\ &\times |\mathcal{M}(p_a p_b \to \{p_f\})|^2 (2\pi)^4 \, \delta^{(4)} \Big(x_1 P_1 + x_2 P_2 - \sum_f p_f \Big) \end{split}$$

LO calculations with PEPPER [Bothmann et al. arXiv:2311.06198, SciPost Phys. 15, 169 (2023)]







- runs natively on the GPU, extremely parallel
- ▶ uses CHILI, a simple yet efficient algorithm for phase space sampling
- ▶ single *t*-channel combined with any number of *s* channel decays
- helicity sampling by default
- ▶ distribution can look very different for different helicity states
- → learn the helicity amplitudes by making the model conditional:

$$q(x;\theta) \to q(x|\lambda_1 \dots \lambda_n;\theta)$$

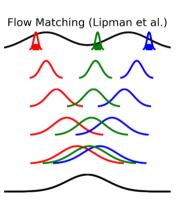
→ This is something VEGAS cannot do!

Talking to PEPPER

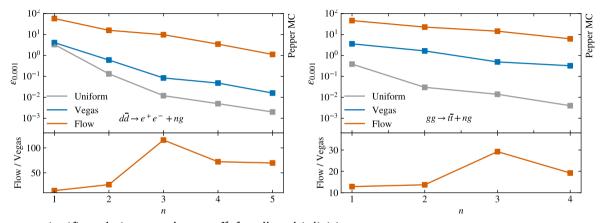
- ▶ implemented a minimal I/O interface into PEPPER
- ▶ based on HDF5 event format [Bothmann et al. Phys. Rev. D 109, 014013 (2024)]
- ▶ when sampling with CHILI, write out 'random numbers' and weights
- ▶ read in random numbers, Jacobians, helicities from file and pass through снігі mapping

LO results

- ▶ consider two LHC examples: $pp \rightarrow Z + n$ jets $(n \le 5)$ and $pp \rightarrow t\bar{t} + n$ jets $(n \le 4)$
- ▶ specific partonic channels: $d\bar{d} \rightarrow e^+e^- + ng$ and $gg \rightarrow t\bar{t} + ng$
- ▶ dimensionalities from 7 to 19
- number of helicity states from 8 to 256
- ▶ baseline: VEGAS Lepage (1978), Journal of Computational Physics 27 (2) trained on many events (>400M for Z + 5 jets)
- use flow matching to learn a velocity field (fast to train)
- generate samples, Jacobians by integrating velocity field with ODE solver (slow to sample)
- ▶ each flow trained on 170M events in total
- cut efficiencies high and on par with VEGAS

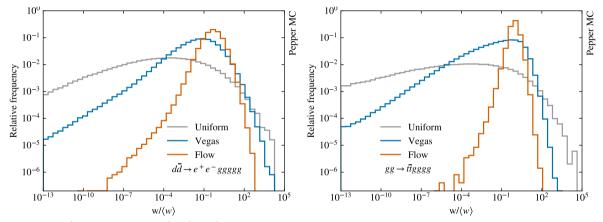


LO results: unweighting efficiency



- ▶ significantly increased unw. eff. for all multiplicities
- ▶ factors up to 115
- seems to scale well

LO results: weight distributions



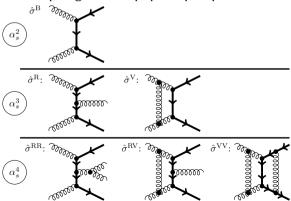
much narrower weight distributions

Higher order contributions

Partonic cross-section:

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)} + \mathcal{O}\left(\alpha_s^{n_{(0)}}\alpha_s^3\right)$$

Example: gluonic top quark pair production



Next-to-leading order QCD

partonic NLO cross-section:

$$\hat{\sigma}_{ab}^{(1)} = \hat{\sigma}_{ab}^R + \hat{\sigma}_{ab}^V + \hat{\sigma}_{ab}^C$$

- \$\hat{\sigma}_{ab}^{R}\$ and \$\hat{\sigma}_{ab}^{V}\$ are separately divergent
 use dimensional regularization to replace divergences by poles

Next-to-leading order QCD

partonic NLO cross-section:

$$\hat{\sigma}_{ab}^{(1)} = \hat{\sigma}_{ab}^{R} + \hat{\sigma}_{ab}^{V} + \hat{\sigma}_{ab}^{C}$$

- $ightharpoonup \hat{\sigma}_{ab}^R$ and $\hat{\sigma}_{ab}^V$ are separately divergent
- use dimensional regularization to replace divergences by poles

NLO subtraction idea:

$$\begin{split} \hat{\sigma}_{ab}^{(1)} &= \int_{m+1} \left[\mathrm{d}\hat{\sigma}_{ab}^R - \mathrm{d}\hat{\sigma}_{ab}^A \right] + \int_{m+1} \mathrm{d}\hat{\sigma}_{ab}^A + \int_m \mathrm{d}\hat{\sigma}_{ab}^V + \int_m \mathrm{d}\hat{\sigma}_{ab}^C \\ &= \int_{m+1} \left[\left(\mathrm{d}\hat{\sigma}_{ab}^R \right)_{\epsilon=0} - \left(\mathrm{d}\hat{\sigma}_{ab}^A \right)_{\epsilon=0} \right] + \int_m + \left[\mathrm{d}\hat{\sigma}_{ab}^V + \int_1 \mathrm{d}\hat{\sigma}_{ab}^A \right]_{\epsilon=0} + \int_m \mathrm{d}\hat{\sigma}_{ab}^C \\ & \blacktriangleright \hat{\sigma}_{ab}^A \text{ is a local counterterm} \end{split}$$

The STRIPPER scheme M. Czakon and D. Heymes: Nucl. Phys. B 890 (2014) 152-227

- sector-improved residue subtraction
- ▶ introduce selector function to filter out individual infrared limits in 'sectors'
- poles can be extracted and cancelled by virtual corrections
- challenge: evaluate sum of many integrals
- ▶ individual contributions can be of very different shape

STRIPPER NLO calculations

▶ at NLO we have the following contributions:

$$\hat{\sigma}_{ab}^{R} = \hat{\sigma}_{ab}^{RF} + \hat{\sigma}_{ab}^{RU}$$
$$\hat{\sigma}_{ab}^{V} = \hat{\sigma}_{ab}^{VF} + \hat{\sigma}_{ab}^{VU}$$

- phase space is mapped onto a unit hypercube
- sample over sectors and helicities

Negative weights

- NLO cross sections are not positive-definite!
- sometimes we subtract too much
- typically one adapts the sampling distribution to $|d\sigma|$
- ▶ keep sign of target during integration
- lacktriangle found that stratification into positive/negative parts is better than learning |f|

$$f(\mathbf{x}) = f_{+}(\mathbf{x}) + f_{-}(\mathbf{x}), \quad \text{with} \quad f_{\pm}(\mathbf{x}) = \operatorname{sgn}(f(\mathbf{x}))|f(\mathbf{x})|,$$

use two sampling densities:

$$I = \int_{\mathbf{H}_+(\mathbf{x}) \in \Omega} d\mathbf{H}_+ \frac{f_+(\mathbf{x})}{h_+(\mathbf{x})} + \int_{\mathbf{H}_-(\mathbf{x}) \in \Omega} d\mathbf{H}_- \frac{f_-(\mathbf{x})}{h_-(\mathbf{x})}.$$

- reduced variance if we can accurately sample within the strata
 - → flows are able to learn boundaries between pos/neg very efficiently

Talking to STRIPPER

- ▶ we built a python interface (using pybind11) around the STRIPPER library
- use STRIPPER (sequentially on CPU) to evaluate amplitudes in individual sectors but do actual integration in python
- ▶ input 'random numbers' and get weights
- use GPU to generate large sample of random numbers from trained flow model and write to disk
- ▶ evaluate them asynchronously with STRIPPER

NLO results

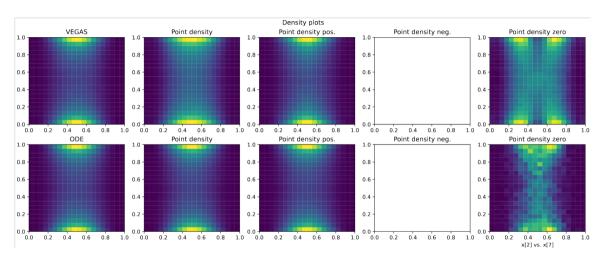
- consider top quark pair production at LHC
- gluonic initial state
- ▶ baseline: VEGAS
- ► train on 10M weighted events

NLO results

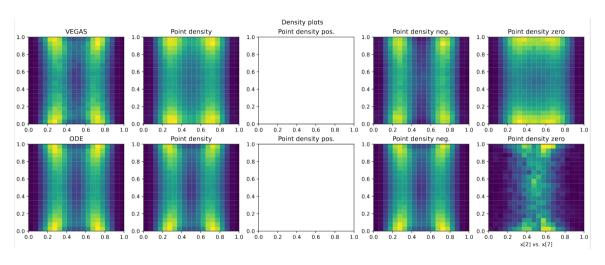
Contr.	positive		negative		
	VEGAS	ODE-Flow	VEGAS	ODE-Flow	
σ^{RF}	895.50 ± 0.95	894.9 ± 0.2	-198.13 ± 0.42	-198.44 ± 0.06	
σ^{RU}	443.15 ± 0.60	441.85 ± 0.15	-980.98 ± 0.77	-980.2 ± 0.2	
$\sigma^{\sf VF}$	14.030 ± 0.008	14.018 ± 0.001	-58.94 ± 0.03	-58.9315 ± 0.0050	

- ▶ note: MC error scales as $\frac{1}{\sqrt{N}}$
- \rightarrow error reduction by $\frac{1}{x}$ means $\frac{1}{x^2}$ as many events needed
 - efficiency increased by factors between 15 and 64
 - ▶ flow samples within pos/neg very efficiently: > 95 % for σ^{RF} (vegas: > 60 %)

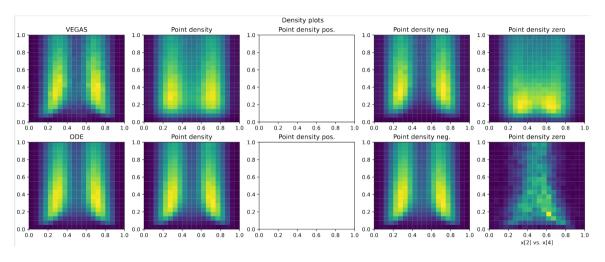
NLO results: RF pos 2d distribution



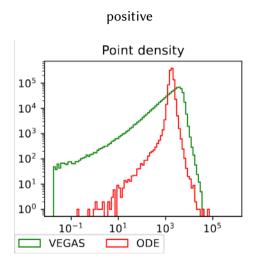
NLO results: RF neg 2d distribution

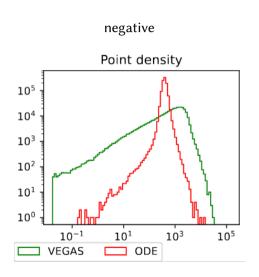


NLO results: RF neg 2d distribution



NLO results: RF weight distributions





STRIPPER NNLO calculations

the NNLO correction can be written as

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{RR} + \hat{\sigma}_{ab}^{RV} + \hat{\sigma}_{ab}^{VV} + \hat{\sigma}_{ab}^{C1} + \hat{\sigma}_{ab}^{C2}$$

▶ we have the following contributions:

$$\begin{split} \hat{\sigma}_{ab}^{RR} &= \hat{\sigma}_{ab}^{RRF} + \hat{\sigma}_{ab}^{RRSU} + \hat{\sigma}_{ab}^{RRDU} \\ \hat{\sigma}_{ab}^{RV} &= \hat{\sigma}_{ab}^{RVF} + \hat{\sigma}_{ab}^{RVDU} + \hat{\sigma}_{ab}^{RVFR} \\ \hat{\sigma}_{ab}^{VV} &= \hat{\sigma}_{ab}^{VVF} + \hat{\sigma}_{ab}^{VVDU} + \hat{\sigma}_{ab}^{VVFR} \end{split}$$

- many sectors and helicity states
- ▶ large cancellations lead to numerical difficulties

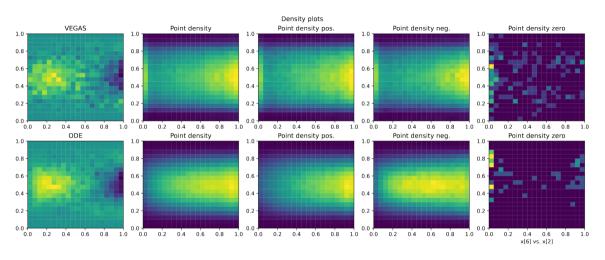
NNLO results

selected results:

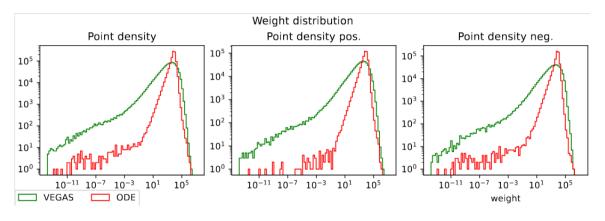
Contr.	positive		negative	
	VEGAS	ODE-Flow	VEGAS	ODE-Flow
σ^{RRF}	382.3 ± 1.3	381.2 ± 0.6	-413.5 ± 1.3	-414.19 ± 0.56
σ^{RRSU}	3717.5 ± 5.6	3700.0 ± 2.8	-881.2 ± 2.2	-884.7 ± 4.4
σ^{RRDU}	5638.9 ± 6.5	5643.9 ± 3.8	-8078.3 ± 8.5	-8071.0 ± 5.7

- ▶ find gains for almost all contributions
- ▶ so far, lower gains than for NLO
- numerical difficulties might play a role
- work in progress

NNLO results: RRF 2d distribution



NNLO results: RRF weight distribution



Conclusions

- used Flow Matching to improve sampling for LO, NLO and NNLO calculations
- model is conditioned on discrete variables (helicities, sectors)
- ▶ considered Z + n jets and $t\bar{t} + n$ jets production at LHC
- ▶ implemented minimal interfaces to PEPPER and STRIPPER: exchange random numbers/weights through files
- ▶ found significant gains both for integration and unweighted event generation:
- → up to 115 times increase in unweighting efficiency at LO
- ightarrow up to 64 times more efficient integration at NLO
 - working on final numbers for NNLO

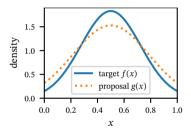
Conclusions

- used Flow Matching to improve sampling for LO, NLO and NNLO calculations
- model is conditioned on discrete variables (helicities, sectors)
- ▶ considered Z + n jets and $t\bar{t} + n$ jets production at LHC
- ▶ implemented minimal interfaces to PEPPER and STRIPPER: exchange random numbers/weights through files
- ▶ found significant gains both for integration and unweighted event generation:
- → up to 115 times increase in unweighting efficiency at LO
- → up to 64 times more efficient integration at NLO
- working on final numbers for NNLO

Questions and suggestions are welcome!

Backup Slides

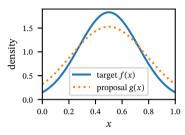
Sampling basics: importance sampling



$$\boxed{\int_{[0,1]^d} f(x) dx \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x)}$$

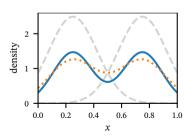
- draw points from a proposal distribution
- ▶ points come with weights $w_i = \frac{f(x_i)}{g(x_i)}$
- spread of weights is small if proposal is close to target

Sampling basics: importance sampling



$$\int_{[0,1]^d} f(x) dx \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x)$$

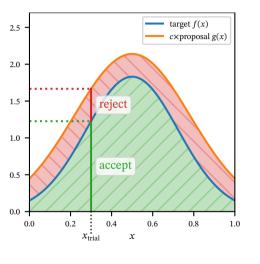
- draw points from a proposal distribution
- ▶ points come with weights $w_i = \frac{f(x_i)}{g(x_i)}$
- spread of weights is small if proposal is close to target



multichannel:
$$g(x) = \sum_{i}^{N_c} \alpha_i g_i(x)$$
, $\sum_{i}^{N_c} \alpha_i = 1$

- ▶ use mixture distribution for multimodal targets
- construct channels based on physics knowledge
- ► automatic channel weight optimization [Kleiss&Pittau Comput.Phys.Commun. 83 (1994) 141-146]

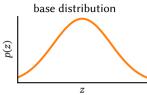
Unweighted event generation (rejection sampling)

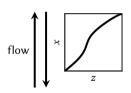


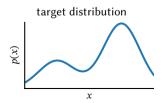
Goal generate i.i.d. samples

- ightharpoonup sample from proposal g(x) (via inverse transform)
- ▶ determine weights $w(x) = \frac{f(x)}{g(x)}$
- ▶ accept events with probability $p_{\text{accept}(x)} = \frac{w(x)}{w_{\text{max}}}$ → reduce sample size!
- unweighting efficiency: $\eta = \frac{\langle w \rangle}{w_{\text{max}}}$

Normalizing Flows







- ▶ generative model
- based on change-of-variable formula:

$$\mathbf{x} = \mathbf{g}(\mathbf{z}) \quad \Rightarrow \quad p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^T} \right) \right|^{-1}$$

→ transform simple distribution into complex one

key properties

- invertible (bijective map)
- · can evaluate probability density exactly
- parameterized by NNs \rightarrow train via loss minimization
- use for adaptive importance sampling
- replacement for VEGAS [Lepage (1978), JCP 27 (2)]

Normalizing Flows

We can distinguish three kinds of normalizing flows:

- discrete flows (autoregressive, coupling)
- ▶ invertible residual networks
- continuous time flows (Neural ODEs)

Distinguishing feature: How the Jacobian is made tractable

(a) Det. Identities (Low Rank)

(b) Autoregressive (Lower Triangular)

(c) Coupling (Structured Sparsity)

(d) **Unbiased Est.** (Free-form)

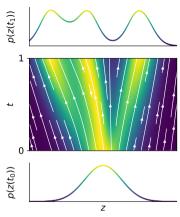
Continuous normalizing flows - Neural ODE

reconsider change of variable formula:

$$\mathbf{x} = \mathbf{g}(\mathbf{z}) \quad \Rightarrow \quad p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^{T}} \right) \right|^{-1}$$

now consider a transformation continuous in time:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = g(\mathbf{x}(t), t) \quad \Rightarrow \quad \frac{\partial \log p_{\mathbf{x}}(\mathbf{x})}{\partial t} = -\operatorname{tr}\left(\frac{\mathrm{d}g}{\mathrm{d}\mathbf{x}(t)}\right)$$



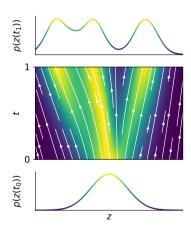
- ightharpoonup g only needs to be Lipschitz continuous but not bijective ightharpoonup use a neural network
- ► free-form Jacobian
- ▶ trace scales better than determinant

Continuous normalizing flows - Neural ODE

The instantaneous change of variable is related to the continuity equation well known in physics:

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(\mathbf{x}) + \mathrm{div}(p_t(\mathbf{x})\,\upsilon_t(\mathbf{x})) = 0$$

where v_t is a time-dependent vector field and div = $\sum_{i=1}^{d} \frac{\partial}{\partial x^i}$ \rightarrow probability density 'flows' like a fluid with velocity v_t



Continuous normalizing flows - Neural ODE

Calculate the log probability together with the flow trajectory by numerically solving the ODE

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} g(\mathbf{x}, t) \\ \log p_t(g(\mathbf{x}, t)) \end{bmatrix} = \begin{bmatrix} v_t(g(\mathbf{x}, t)) \\ -\operatorname{div}(p_t(\mathbf{x}) v_t(\mathbf{x})) \end{bmatrix}$$

given the initial conditions

$$\begin{bmatrix} g(\mathbf{x}, 0) \\ \log p_0(g(\mathbf{x}, 0)) \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ p_{\mathbf{z}}(\mathbf{z}) \end{bmatrix}$$

 \rightarrow flow from base $p_0 = p_z$ to $p_1(\mathbf{x})$ by integrating over $t \in [0, 1]$

given a sample \mathbf{x}_1 , we can compute $p_1(\mathbf{x}_1)$ by solving the ODE in reverse

Simulation-free training (flow matching)

Regression objective for the vector field:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x \sim p_t(x)} \|v_t(x;\theta) - u_t(x)\|^2$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Simulation-free training (flow matching)

Regression objective for the vector field:

$$\mathcal{L}_{\mathsf{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x \sim p_t(x)} \|v_t(x;\theta) - u_t(x)\|^2$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

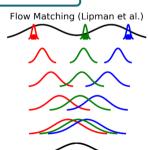
Conditional flow matching objective:

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x_1 \sim q(x_1), \ x \sim p_t(x|x_1)} \|v_t(x;\theta) - u_t(x|x_1)\|^2$$

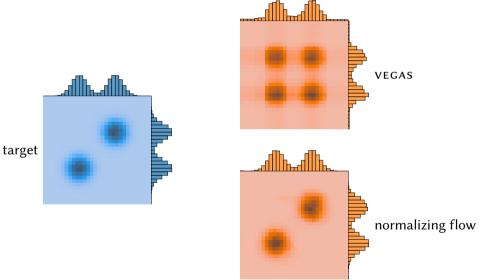
 \rightarrow the gradients w.r.t. θ are the same as for \mathcal{L}_{FM} !

Choose Gaussian probability paths:

$$p_t(x|x_1) = \mathcal{N}(x \mid tx_1, (t\sigma_{\min} - t + 1)^2 I)$$



Toy example: VEGAS vs. normalizing flow



→ replacing VEGAS with normalizing flows reduces the spread of weights