

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Generative Modeling of Hadronic Showers in the ILD Calorimeters

<u>Thorsten Buss</u>, Henry Day-Hall, Frank Gaede, Gregor Kasieczka, William Korcari Anatolii Korol, Katja Krüger, Martina Mozzanica, Lorenzo Valente

March 12, 2025 KISS Annual Meeting

thorsten.buss@uni-hamburg.de

Thorsten Buss

Detector Simulation

- Monte Carlo (MC) necessary to compare theory and measurements
- computational requirements expected to exceed available resources soon
- detector simulation most expensive part of simulation chain

1 CMS Offline Software and Computing. CMS Phase-2 Computing Model: Update Document. 2022. URL: https://cds.cern.ch/record/2815292

Thorsten Buss

International Large Detector (ILD)

- proposed detector for the International Linear Collider ILC
- has two sampling calorimeters
- electromagnetic calorimeter (ECAL)
 - 30 layers, 5mm × 5mm cells
- hadronic calorimeter (HCAL)
 - 48 layers, 30mm × 30mm cells
- dataset:
 - pion showers in ECAL and HCAL
 - uniform distribution of incident energies

10 GeV $\leq E_{\rm inc} \leq$ 90 GeV

² Ties Behnke et al. The International Linear Collider Technical Design Report - Volume 4: Detectors. 2013. arXiv: 1306.6329
³ ILD Concept Group. International Large Detector. Interim Design Report. 2020. arXiv: 2003.01116

Thorsten Buss

Hadronic Showers in ILD Calorimeters

- hadronic showers are complex
- difficult to model
- naive binning with 3 × 3 bins per ECAL cell results in more than 10⁷ bins
- represent as a point cloud
- binning points to clusters

Thorsten Buss

PionClouds

- generative model for hadronic showers
- based on point clouds

- score matching diffusion model
- no calibration necessary

HCAL Network Architecture

- modeling point interactions with attention mechanism
- four encoder layers and one decoder layer
- Fourier Layers help to learn high-frequency features
- conditional inputs:
 - diffusion time
 - number of points per layer
 - incident energy
 - ECAL point cloud
- inputs:
 - HCAL point cloud
- outputs:
 - score function

Resuts Point Level

- point level observables
- good agreement with MC
- uniformly distributed incident energies

- left: cell energy spectrum
- middle: radial energy profile
- right: longitudinal energy profile

Thorsten Buss

Resuts Shower Level

- visible energy sum
- good agreement with MC

- left: energy deposited in ECAL
- middle: energy deposited in HCAL
- right: energy deposited in both

L2LFlowMatching

- generative model for hadronic showers
- based on point clouds
- conditional flow matching model
- point interactions modeled with attention mechanism
- layer are generated sequentially
 - #PointsFlow generates number of points per layer
 - Inductive Flow model generates point positions
 - conditioning on up to fore previous layers
 - reduces number of points in the attention mechanism

Preliminary Results

- good agreement on individual shower level
- right: real shower

Thorsten Buss

Preliminary Results Point Level

- point level observables
- number of points per layer from real data

- left: point energy spectrum
- middle: radial energy profile
- right: longitudinal energy profile

Domain Adaptation

Basic Assumption: Shared properties between domains facilitates knowledge transfer.

- \blacktriangleright photon showers \rightarrow electron showers
- photon showers: CaloClouds dataset
- electron showers: CaloChallenge 3⁴
- model: CaloClouds II⁵

⁴ Claudius Krause et al. CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation. 2024. arXiv: 2410.21611
⁵ Erik Buhmann et al. CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation. 2023. arXiv: 2309.05704

Thorsten Buss

Preliminary Results

- Kullback-Leibler divergence (KL)
- six heigh level observables
- average over all six kl values
- same metric used for model selection
- advantage of domain adaptation

Comparison of the Training Strategies

Thorsten Buss

Summary

- hadronic showers are complex
- high granularity of ILD calorimeters
- modeling based on point clouds
- attention mechanism for point interactions
- PionClouds
 - score matching diffusion model
 - no calibration necessary
 - good agreement with MC
- L2LFlowMatching
 - conditional flow matching model
 - layer are generated sequentially
 - good agreement on individual shower level
- domain adaptation
 - reusing knowledge
 - improves performance for smaller datasets

