Status update C1:
Monte Carlo Benchmark Suite

Salvatore La Cagnina

March 13th
KISS Annual Meeting 2025

technische universitat
dortmund

Quality Control for Monte Carlo Samplers

Which sampler is “wrong”?

Several sampling solutions exist to solve numerical problems
Samplers often developed and tested for specific problems
— Challenge to find the correct sampler for different use cases

a) -
e Goal: Universal framework for quality tests of Monte Carlo
samplers
o Collect test functions/problems
o Collect metrics and samplers

o Establish a database for comparison/validation of b)
sampling quality

p(x)

e How dowe compare samples ?
e General idea: build test statistics for each metric and problem
using lID/truth

o Compare to metrics (or their distribution) of sampled C)
distributions

p(x)

MCBench - Monte Carlo Benchmark Suite

Design Concepts of Test Suite

comparison for

quality
/ test cases \ /” samplers/samples) /test metrics \
efunctional form e read/generate einformation on San;p,lfr;eﬁ
edimensionality samples calculating metric Shatistic
eparam bounds e additional infos, with samples
ESS, autocorr eadditional infos
— |ID sampleable \ J (two-sample test? N
iid tes

\ name? dims?)

- statistic

e Main focus on easy expandability for samplers, test functions and test metrics
e |ID sampling for comparisons of test metrics

MCBench - Monte Carlo Benchmark Suite

MCBench - Quality Control for Monte Carlo Samplers

[0 README 33 MIT license

e Collection of Test Functions

e (easy expandable) collection of metrics (both
one-sample and two-sample metrics)

e for more infos see the github documentation

Name Equation Properties

1 7(77;1)2
-e 202
V2ro
Nie(, £) = (2m)™%/2 det(£)~1/2

Standard Normal 1D flz| pyo)= Unimodal

Standard Normal £D 1 Unimodal,
uncorrelated - (75(7” —)TE (z— u)) k = 2,3,10,100
Standard Normal £D Ni(p, %) r=0.2,0.9
weakly /strongly correlated T=r-J+Q-7)-1I k =2,10,100
Mixture Normal kD f(@ | p,2) =025 Vi (11, 2) + 0.75 Ny (—p, X) Multimodal
strongly correlated S=r-J+(1-7)-1 r=09k=3,10
. i 1
Cauchy 1D f(@ | zo,v) = ﬂ-_,y ’ 14 (T_m)2 Unimodal
¥
J 1 (yi — 0:)* For more details
Eight schools example Lo |y) = H exp |\ — 252 Ny
0 o o5 see Section 3

https://arxiv.org/abs/2501.03138

MCBench - Monte Carlo Benchmark Suite

MCBench - Monte Carlo Sampling Benchmark Suite

Documentation dev license MIT| () CI 'passing

The MCBench benchmark suite is designed for quantitative comparisons of Monte Carlo (MC) samples. It offers a
standardized method for evaluating MC sample quality and provides researchers and practitioners with a tool for

validating, developing, and refining MC sampling algorithms.
Read more about MCBench at https
Installation

To use MCBench you need a J ition. We recommend to use Julia 1.10 or above. Install MCBench via the Julia
package manager by running

using Pkg =]

pkg"add https://github.com/tudo-physik-ea/McBench”

https://github.com/tudo-physik-e4/MCBench

One-sample metrics

e Marginal mean: marginal_mean()
e Marginal variance: marginal_variance()
e Global mode: global_mean()
Marginal mode: marginal_mode()
Marginal skewness: marginal_skewness()

Marginal kurtosis: marginal_kurtosis()

Two-sample metric

e Chi-squared: chi_squared()

e Sliced Wasserstein Distance: sliced_wasserstein_distance()

e Maximum Mean Discrepancy: maximum_mean_discrepancy()

https://github.com/tudo-physik-e4/MCBench
https://arxiv.org/abs/2501.03138

Test Suite Workflow

automated 11D
sampling through
MCBench package

~—

List of test functions

batches of 11D
samples

]

batches of user

generated samples

r

ead intoﬁMCBench

custom implementation

in user-selected
sampling framework

MCBench - Monte Carlo Benchmark Suite

CSV file
with
n samples

single-sample Mean of x1
metrics 600
400
200
o
o 3 6
.
.
.
Sliced Wasserstein distance
two-sample ol
i . 150
metrics: 4
IID vs. IID 50
° 0.06 0.08 0.10 0.12
two-sample Sliced Wasserstein distance
metrics: -
user vs. [ID _—
100
o
0025 0050 0075 0100 0125
.
.
.
single-sample Mean of x1
metrics 250
200
150
100
50
o
0.0 25 5.0 75

uonezijewlon

uonezijewioN

Mean-x3 -
Mean-x2 -
Mean-x1 -
Variancex3 -
Variance-x2 -
Variance-x1 |

Slicedwasserstein-x1 -

MaximumMeanDiscrepancy-x1 -

-1 o 1 2 3
metric - mean(metric) / std(metric)

Mean-x3 |- —_— 4
Meanx2 —
Meanxd ——

Variancex3 —_——

Variance-x2 ——

Variance-x1 e

] SlicedWasserstein-x1 —
MaximufnMeanDiscrepancy-x1 S P—
- -2 1 o0

1 2 3
metric - mean(metric) / std(metric)

Sliced Wasserstein distance

300 -
200 o 4

100 -/‘_rl’ b
i :

D

|~===1ID vs. Il
User

—-0.05 0.00 0.05 0.10 0.15

Simple Example, 3D Unit Normal _:

Soat J
e Defining Test case (using the Distributions.jl package): R RN
x[1]
f = MvNormal([0.0,0.0,0.0],I(3)) a2 |
bounds = NamedTupleDist(x = fill(-10..10,3)) 2 —_
normaltestcase = testcases(f,bounds,3,"3DNormal") [g
B3 , z
v 07s Julia -4
testcases{DiagNormal, NamedTupleDist{(:x,), Tuple{Product{Continuous, Uniform{Float64}, Vector{Uniform{F1l gl [01] 2 4
dim: 3 X
u: [0.0, 0.0, 0.0] nl n . 04t

3: [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

p(x[3])
-

x[31]
x[3]

e Building test statistic for metrics with 11D and BAT MH sampler

build_teststatistic(normaltestcase,marginal_mean()) x[1] x[2] x[3]
build_teststatistic(normaltestcase,marginal_mean(),BATMH())
plot_metrics(normaltestcase,[marginal_mean()],BATMH())

e Example: Mean of marginal distribution \ S=nclmen
. . .. 300 -
o Normalize in terms of IID test statistic

_%J] 200

c

Ll
3DNormal 100 |

Mean-x1 t
=3 -2 -1 0 1 2 3 ot — | L | i
metric - mean(metric) / std(metric) —0.004 ~0.002 OI'\?I‘;‘;” 0.002 0.004

MCBench - Monte Carlo Benchmark Suite 6

3D Normal vs mixture model

e Running testsuite using Metropolis-Hastings

e Two modelsin comparison
o 3D standard normal
o 3D mixture model with multiple modes far
apart

r=5

f1 = MvNormal (r*ones(10), ones(10,10)*0.9 + I(10)*0.1)

f2 = MvNormal (-r*ones(10), ones(10,10)*0.9 + I(10)*0.1)

f = MixtureModel([f1,f2], [0.25, 0.75])

bounds = NamedTupleDist(x = [-100..100 for i in 1:10])
normal_3d_multimodal_10std = Testcases(f,bounds,10,"Normal-3D-Multimodal-10std")

e Compare aset of metrics using both models

e Benchmark suite reflects difficulties in sampling
multimodal distributions

MCBench - Monte Carlo Benchmark Suite

Mean-x1

Mean-x2

Mean-x3

Variance-x1
Variance-x2
Variance-x3
SlicedWasserstein-x1

MaximumMeanDiscrepancy-x1

Normal-3D-Uncorrelated-BAT-MH

- —e}—— g

L i P | a
T A d 1

- — .
-3 -2 -1 0 1 2 3
metric - mean(metric) / std(metric)

Normal-3D-Multimodal-10std-BAT-MH

Mean-x1

Mean-x2

Mean-x3

Variance-x1
Variance-x2
Variance-x3
SlicedWasserstein-x1

MaximumMeanDiscrepancy-x1

- ————— .
1 1 1 1 1 1

-30 -20 -10 0 10 20 30
metric - mean(metric) / std(metric)

ummary and Conclusions

e Developed a test suite (in the julia
programming language

e Compare samplers to IID samples using metrics

e Provide aselection of (IID sampleable) test
functions and (one and two-sample) metrics

e Visit our suite on github and paper on arxiv

o https://eithub.com/tudo-physik-e4/MCBench
o https://arxiv.org/abs/2501.03138

Next Steps:

e Add full test case support for different platforms
(R, stan, pymc) including testpoints

e Lookout toinclude more complex test cases and
applications

MCBench - Monte Carlo Benchmark Suite

ar <1V > stat > arXiv:2501.03138

Statistics > Computation

[Submitted on 6 Jan 2025]
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
Zeyu Ding, Cornelius Grunwald, Katja Ickstadt, Kevin Kréninger, Salvatore La Cagnina

I this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchmark suite enables
quantitative comparisons of samples by applying different metrics, including basic statistical metrics as well as more complex measures, in particular the
sliced Wasserstein distance and the maximum mean discrepancy. We apply these metrics to point clouds of both independent and identically distributed
(IID) samples and correlated samples generated by MC techniques, such as Markov Chain Monte Carlo or Nested Sampling. Through repeated
comparisons, we evaluate test statistics of the metrics, allowing to evaluate the quality of the MC sampling algorithms.

Our benchmark suite offers a variety of target functions with different complexities and dimensionalities, providing a versatile platform for testing the
capabilities of sampling algorithms. Implemented as a Julia package. MCBench enables users to easily select test cases and metrics from the provided
collections, which can be extended as needed. Users can run external sampling algorithms of their choice on these test functions and input the resulting
samples to obtain detailed metrics that quantify the quality of their samples compared to the IID samples generated by our package. This approach yields
clear, quantitative measures of sampling quality and allows for informed decisions about the effectiveness of different sampling methods.

By offering such a standardized method for evaluating MC sampling quality, our suite provides and from many
scientific fields, such as the natural sciences, engineering, or the social sciences with a valuable tool for developing, validating and refining sampling
algorithms.

Subjects: Computation (stat.CO); Methodology (stat. ME)
Citeas: arXiv:2501.03138 [stat.CO]
(or arXiv:2501.03138v1 [stat.COJ for this version)
ttps/doi.org/10.48550/arXiv.2501.03138 @

ench 2 Notiations

1 Pullrequests 1 G B Projects @ Security insights

@ savoic
- github
™ o

test

) giton Releases

0 UCENsEmd
projecttom! Packages

[} ReADMEmd

Contributors 2
1 README

) comeliG

MCBench - Monte Carlo Sampling Benchmark Suite @ -

ocumentation e tcenze]) c1 [FREERE] Languages

The MCBench benchmark suite s designed for quantitative comparisons of Monte Carlo (MC) samples. It offers a
ndardized method for evaluating M alty and provides s and practitioners with a tool for
idating, developing, and refining M algorithms

https://github.com/tudo-physik-e4/MCBench
https://arxiv.org/abs/2501.03138

MCBench - Monte Carlo Benchmark Suite

