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Quality Control for Monte Carlo Samplers

Which sampler is “wrong”?

Several sampling solutions exist to solve numerical problems
Samplers often developed and tested for specific problems
— Challenge to find the correct sampler for different use cases

a) -
e Goal: Universal framework for quality tests of Monte Carlo
samplers
o Collect test functions/problems
o Collect metrics and samplers

o Establish a database for comparison/validation of b)
sampling quality

p(x)

e How dowe compare samples ?
e General idea: build test statistics for each metric and problem
using lID/truth

o Compare to metrics (or their distribution) of sampled C)
distributions

p(x)
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Design Concepts of Test Suite
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e Main focus on easy expandability for samplers, test functions and test metrics
e |ID sampling for comparisons of test metrics
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MCBench - Quality Control for Monte Carlo Samplers
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e Collection of Test Functions

e (easy expandable) collection of metrics (both
one-sample and two-sample metrics)

e for more infos see the github documentation
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https://arxiv.org/abs/2501.03138
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MCBench - Monte Carlo Sampling Benchmark Suite
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The MCBench benchmark suite is designed for quantitative comparisons of Monte Carlo (MC) samples. It offers a
standardized method for evaluating MC sample quality and provides researchers and practitioners with a tool for

validating, developing, and refining MC sampling algorithms.
Read more about MCBench at https
Installation

To use MCBench you need a J ition. We recommend to use Julia 1.10 or above. Install MCBench via the Julia
package manager by running

using Pkg =]

pkg"add https://github.com/tudo-physik-ea/McBench”

https://github.com/tudo-physik-e4/MCBench

One-sample metrics

e Marginal mean: marginal_mean()
e Marginal variance: marginal_variance()
e Global mode: global_mean()
Marginal mode: marginal_mode()
Marginal skewness: marginal_skewness()

Marginal kurtosis: marginal_kurtosis()

Two-sample metric

e Chi-squared: chi_squared()

e Sliced Wasserstein Distance: sliced_wasserstein_distance()

e Maximum Mean Discrepancy: maximum_mean_discrepancy()


https://github.com/tudo-physik-e4/MCBench
https://arxiv.org/abs/2501.03138

Test Suite Workflow
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MCBench package
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Simple Example, 3D Unit Normal _:

Soat J
e Defining Test case (using the Distributions.jl package): R RN
x[1]
f = MvNormal([0.0,0.0,0.0],I(3)) a2 |
bounds = NamedTupleDist(x = fill(-10..10,3)) 2 —_
normaltestcase = testcases(f,bounds,3,"3DNormal") [ g
B3 , z
v 07s Julia -4
testcases{DiagNormal, NamedTupleDist{(:x,), Tuple{Product{Continuous, Uniform{Float64}, Vector{Uniform{F1l gl [01] 2 4
dim: 3 X
u: [0.0, 0.0, 0.0] nl n . 04t

3: [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

p(x[3])
-

x[31]
x[3]

e Building test statistic for metrics with 11D and BAT MH sampler

build_teststatistic(normaltestcase,marginal_mean()) x[1] x[2] x[3]
build_teststatistic(normaltestcase,marginal_mean(),BATMH())
plot_metrics(normaltestcase,[marginal_mean()],BATMH())

e Example: Mean of marginal distribution \ S=nclmen
. . .. 300 -
o Normalize in terms of IID test statistic
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3D Normal vs mixture model

e Running testsuite using Metropolis-Hastings

e Two modelsin comparison
o 3D standard normal
o 3D mixture model with multiple modes far
apart

r=5

f1 = MvNormal (r*ones(10), ones(10,10)*0.9 + I(10)*0.1)

f2 = MvNormal (-r*ones(10), ones(10,10)*0.9 + I(10)*0.1)

f = MixtureModel([f1,f2], [0.25, 0.75])

bounds = NamedTupleDist(x = [-100..100 for i in 1:10])
normal_3d_multimodal_10std = Testcases(f,bounds,10,"Normal-3D-Multimodal-10std")

e Compare aset of metrics using both models

e Benchmark suite reflects difficulties in sampling
multimodal distributions
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ummary and Conclusions

e Developed a test suite (in the julia
programming language

e Compare samplers to IID samples using metrics

e Provide aselection of (IID sampleable) test
functions and (one and two-sample) metrics

e Visit our suite on github and paper on arxiv

o  https://eithub.com/tudo-physik-e4/MCBench
o https://arxiv.org/abs/2501.03138

Next Steps:

e Add full test case support for different platforms
(R, stan, pymc) including testpoints

e Lookout toinclude more complex test cases and
applications
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[Submitted on 6 Jan 2025]
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
Zeyu Ding, Cornelius Grunwald, Katja Ickstadt, Kevin Kréninger, Salvatore La Cagnina

I this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchmark suite enables
quantitative comparisons of samples by applying different metrics, including basic statistical metrics as well as more complex measures, in particular the
sliced Wasserstein distance and the maximum mean discrepancy. We apply these metrics to point clouds of both independent and identically distributed
(IID) samples and correlated samples generated by MC techniques, such as Markov Chain Monte Carlo or Nested Sampling. Through repeated
comparisons, we evaluate test statistics of the metrics, allowing to evaluate the quality of the MC sampling algorithms.

Our benchmark suite offers a variety of target functions with different complexities and dimensionalities, providing a versatile platform for testing the
capabilities of sampling algorithms. Implemented as a Julia package. MCBench enables users to easily select test cases and metrics from the provided
collections, which can be extended as needed. Users can run external sampling algorithms of their choice on these test functions and input the resulting
samples to obtain detailed metrics that quantify the quality of their samples compared to the IID samples generated by our package. This approach yields
clear, quantitative measures of sampling quality and allows for informed decisions about the effectiveness of different sampling methods.

By offering such a standardized method for evaluating MC sampling quality, our suite provides and from many
scientific fields, such as the natural sciences, engineering, or the social sciences with a valuable tool for developing, validating and refining sampling
algorithms.

Subjects: Computation (stat.CO); Methodology (stat. ME)
Citeas:  arXiv:2501.03138 [stat.CO]
(or arXiv:2501.03138v1 [stat.COJ for this version)
ttps/doi.org/10.48550/arXiv.2501.03138 @
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