Updates on the low- μ W-mass analysis

DESY SM group meeting January 27, 2025

LAB, F. Dattola

Christmas intermezzo

News on W - mass (and related)

Last W-mass workshop at CERN before the Christmas break

... new workshop coming up in March/April

PDF4LHC in December at CERN

Many interesting contributions and lively discussion about the way beyond NNLO

Full phase-space boson (p_T, y, M) predictions

• Status of predictions:

> W^{\pm} baseline NNLO+NNLL predictions ($g_1=0.5, \alpha_S=0.0118$) inclusive in M and in mass bins ready for all PDF sets at 5, 13 TeV.

Full phase-space boson (p_T, y, M) predictions

• Status of predictions:

> Predictions of **final-state kinematic observables**, i.e. $p_{\rm T}^l, p_{\rm T}^\nu, m_{\rm T}$, produced at NNLO+NNLL (with $g_1=0.5, \alpha_S=0.0118$) for W^+ at 13 TeV with CT18NNLO

- Quadrature rules for BORN(RES) and CT terms.
- VEGAS MC integration for VJ term.

Full phase-space boson (p_T, y, M) predictions

• Status of predictions:

> W^\pm NNLO+NNLL predictions with g_1, α_s variations inclusive in M and in mass bins ready for all PDF sets at 5, 13 TeV.

Full phase-space boson (p_T, y, M) predictions

• Status of predictions:

> W^\pm NNLO+NNLL predictions with m_b, m_c variations inclusive in M and in mass bins ready for all PDF sets at 5, 13 TeV.

$A_i(p_T, y, M)$ predictions

- Angular distributions of W, Z decay leptons are determined by the boson polarisation state.
- Polarisation is induced at orders above tree level by initial-state QCD interactions.
- A_i 's \equiv boson helicity cross-sections / boson unpolarised cross section.

$$\begin{split} \frac{d\sigma}{dp_T^2 dy dm d\cos\theta d\phi} &= \frac{3}{16\pi} \frac{d\sigma}{dp_T^2 dy dm} \times \left[(1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) \right. \\ &\quad + A_1 \sin 2\theta \cos\phi \\ &\quad + A_2 \frac{1}{2} \sin^2\theta \cos 2\phi \\ &\quad + A_3 \sin\theta \cos\phi \\ &\quad + A_4 \cos\theta \\ &\quad + A_5 \sin^2\theta \sin 2\phi \\ &\quad + A_6 \sin 2\theta \sin\phi \\ &\quad + A_7 \sin\theta \sin\phi \right] \end{split}$$

 θ, ϕ polar and azimuthal angles of the lepton in the boson rest frame.

 $A_i(p_T, y, M)$ predictions

• Status of predictions:

> Predictions of A_i s for Z, W^{\pm} at NLO inclusive in M ready for all PDF sets at 5, 13 TeV.

 $A_i(p_T, y, M)$ predictions

• Status of predictions:

> Predictions of A_i s for W^{\pm} , Z at NNLO inclusive in M ready for all PDF sets at 5, 13 TeV.

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

- Goal: build a full-analytical resummation model where theory is already precise before m(W) fit.
- Achieve the best understanding and control over the underlying non-perturbative (NP) QCD,
 which is related to the intrinsic momentum of partons and can be described by TMD PDFs.
 - DYTurbo parametrises the **NP transverse modes** in TMDs with a form factor.

$$S_{\text{NP}}(b) = \exp \left[-g_{j}(b) - g_{K}(b) \log \frac{m_{\ell\ell}^{2}}{Q_{0}^{2}} \right] \begin{cases} g_{j}(b) = \frac{g b^{2}}{\sqrt{1 + \lambda b^{2}}} + \operatorname{sign}(q) \left(1 - \exp \left[-|q| b^{4} \right] \right) \\ g_{K}(b) = g_{0} \left(1 - \exp \left[-\frac{C_{F} \alpha_{s}(b_{0}/b_{*})b^{2}}{\pi g_{0} b_{\text{lim}}^{2}} \right] \right) \end{cases}$$

- ullet $S_{
 m NP}$ includes 6 parameters which can be fitted to data or varied to assess an uncertainty.
 - g_1 and q representing the leading quadratic and quartic terms, dominant at $p_{\rm T}\sim$ 4–10 GeV.
 - λ controlling the transition from Gaussian (quadratic) to exponential (linear).
 - g_0 controlling the very high b (very small p_T) behaviour.
 - $b_{
 m lim}$ freezing the scale of $lpha_{
 m S}$ and Q_0 defining the starting scale of the TMD evolution.
- Extract and constrain g_0, g_1, q, λ fitting DY data to state-of-the-art QCD predictions.
 - Interfacing DYTurbo to xFitter we can profile simultaneously PDF and NP QCD uncertainties.

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

Which DY data?

- Primarily data from ATLAS DY measurements
 - 8 TeV Z $p_{\rm T}$ data in y bins, fitted up to $p_{\rm T}^Z \le 29$ GeV: provide most stringent constraints on NP parameters.
 - 13 TeV low-mass DY $p_{\rm T}(\mu\mu)$ data in M bins, fitted up to $p_{\rm T}^{\mu\mu} \leq 10$ GeV: expand NP sensitivity. (5 and 13 TeV W and Z $p_{\rm T}$ data measured at low μ will also be included as a cross-check)
- But also data from fixed-target DY measurements: help to better constrain g_0 .
 - $p_{\rm T}(\mu\mu)$ data from Fermilab-E288: $p\,N({\rm Pt}) \to \mu^+\mu^-{\rm X}$ at $\sqrt{\rm s}$ = 19.4 / 23.8 / 27.4 GeV
 - $p_T(\mu\mu)$ data from Fermilab-E605: $pN(Cu) \rightarrow \mu^+\mu^- X$ at \sqrt{s} = 38.8 GeV
 - $p_{\rm T}(\mu\mu)$ data from Fermilab-E772: $pd \to \mu^+\mu^- X$ at \sqrt{s} = 38.8 GeV
- And data from Tevatron: help to constrain valence PDFs at high-x, no HF-initiated processes.
 - Z- $p_{\rm T}$ data from CDF at 1.96 TeV, $p_{\rm T}$ bins of 0.5 GeV fitted up to $p_{\rm T}^Z \leq 30$ GeV: sensitive to g_1 through the position of the Sudakov peak.

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

• Fit setup:

- DYTurbo 1.4 interfaced to xFitter.
- DYTurbo predictions at N3LO (N2IO for ImDY) + N3LL, including EW kFactors and mixed QCDxQED corrections a LL.
- Build a χ^2 including:
 - nuisance parameters (NPs) for experimental uncertainties $\equiv \beta_{j, \rm exp}$
 - NPs coupled with PDF-uncertainty eigenvectors and profiled in the fit.
 - Four free fit parameters corresponding to g_0,g_1,q,λ .

$$\equiv \beta_{k,\text{th}}$$

• χ^2 numerically minimised with CERES.

$$\chi^{2}(\beta_{\text{exp}}, \beta_{\text{th}}) = \sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_{i}^{\text{exp}} + \sum_{j} \Gamma_{ij}^{\text{exp}} \beta_{j, \text{exp}} - \sigma_{i}^{\text{th}} - \sum_{k} \Gamma_{ik}^{\text{th}} \beta_{k, \text{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j, \text{exp}}^{2} + \sum_{k} \beta_{k, \text{th}}^{2}$$

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

• (Preliminary) fit results:

```
Partial chi2s
Dataset
                  2.46(+0.25)
                                  4 ATLAS lmDY pT 13 TeV 12.0-14.0 GeV
Dataset
                  9.89( -0.35)
                                  4 ATLAS lmDY pT 13 TeV 14.0-17.0 GeV
                 20.09( -0.44)
                                  4 ATLAS lmDY pT 13 TeV 17.0-22.0 GeV
Dataset
Dataset
                  6.82(-0.36)
                                  4 ATLAS lmDY pT 13 TeV 22.0-28.0 GeV
                                  4 ATLAS lmDY pT 13 TeV 28.0-36.0 GeV
                  1.06(-0.30)
Dataset
Dataset
                  6.70(-0.20)
                                  4 ATLAS lmDY pT 13 TeV 36.0-46.0 GeV
Dataset
                  3.59( -0.30)
                                  4 ATLAS lmDY pT 13 TeV 46.0-56.0 GeV
                  2.33( -0.38)
                                  9 ATLAS Z pT 8 TeV 0.0-0.4
Dataset
          9
                  1.84( -0.40)
                                  9 ATLAS Z pT 8 TeV 0.4-0.8
Dataset
                       -0.44)
                                  9 ATLAS Z pT 8 TeV 0.8-1.2
Dataset
         10
                  3.08(
Dataset
         11
                  1.13(-0.42)
                                  9 ATLAS Z pT 8 TeV 1.2-1.6
         12
                  2.04( -0.41)
                                  9 ATLAS Z pT 8 TeV 1.6-2.0
Dataset
Dataset
         13
                  0.77( -0.45)
                                  9 ATLAS Z pT 8 TeV 2.0-2.4
                  1.70( -0.48)
                                  9 ATLAS Z pT 8 TeV 2.4-2.8
Dataset
Dataset
         15
                  5.47( -0.45)
                                  9 ATLAS Z pT 8 TeV 2.8-3.6
         16
                  2.64(+0.30)
                                  4 F288 200 GeV M 4-5 GeV
Dataset
Dataset
                  8.43( +0.83)
                                  5 E288 200 GeV M 5-6 GeV
Dataset
         18
                  3.65( +1.19)
                                  6 E288 200 GeV M 6-7 GeV
                  2.88( +2.62)
                                  7 E288 200 GeV M 7-8 GeV
Dataset
         19
                  3.06( +5.24)
                                  8 E288 200 GeV M 8-9 GeV
Dataset
         20
Dataset
Dataset
         22
                  8.34( +0.27)
                                  4 E288 300 GeV M 4-5 GeV
         23
                  6.54(+0.78)
                                  5 E288 300 GeV M 5-6 GeV
Dataset
         24
                  2.02( +1.13)
                                  6 E288 300 GeV M 6-7 GeV
Dataset
         25
                  2.02( +1.15)
                                  7 E288 300 GeV M 7-8 GeV
Dataset
Dataset
         26
                  7.69( +1.08)
                                  8 E288 300 GeV M 8-9 GeV
         27
                 40.56( -3.91)
                                 10 E288 400 GeV M 10-11 GeV
Dataset
Dataset
         28
                  8.96( +1.68)
                                 10 E288 400 GeV M 11-12 GeV
Dataset
         29
                  6.11(+2.59)
                                 10 E288 400 GeV M 12-13 GeV
Dataset
         30
                  3.62( +4.59)
                                 10 E288 400 GeV M 13-14 GeV
         31
                                  5 E288 400 GeV M 5-6 GeV
                 5.75( +1.05)
Dataset
Dataset
                 13.07( +1.24)
                                     E288 400 GeV M 6-7 GeV
Dataset
         33
                 10.48( +1.48)
                                  7 E288 400 GeV M 7-8 GeV
         34
                 10.25( +1.44)
                                  8 E288 400 GeV M 8-9 GeV
Dataset
         35
                 71.64( -6.11)
                                 10 E288 400 GeV M 9-10 GeV
Dataset
Dataset
                 7.51( -0.48)
Dataset
         37
                 10.92( +0.52)
                                  8 E605 M 8-9 GeV
                                 11 E605 M 10.5-11.5 GeV
Dataset
         38
                 10.61( +1.16)
Dataset
         39
                 20.37( +0.20)
                                 12 E605 M 11.5-13.5 GeV
         40
                 21.68( +1.87)
                                 14 E605 M 13.5-18 GeV
Dataset
Dataset
         41
                 1.47( +0.75)
                                  4 E772 M 5-6 GeV
Dataset
         42
                  3.89(+1.45)
                                  5 E772 M 6-7 GeV
Dataset
                  4.84(+0.74)
                                  6 F772 M 7-8 GeV
Dataset
         44
                  7.13( +0.65)
                                  6 E772 M 8-9 GeV
         45
                 11.66( +2.55)
                                  8 E772 M 11-12 GeV
Dataset
         46
                 11.76( +3.58)
                                  8 E772 M 12-13 GeV
Dataset
Dataset
         47
                  5.54( +3.14)
                                  6 E772 M 13-14 GeV
Dataset
         48
                  1.25( +0.37)
                                  6 E772 M 14-15 GeV
                                 55 CDF ZPT 1.96 TEV
                  3.43( -0.67)
Dataset
 Correlated Chi2
                   316.75875586412513
                    37.735584781810601
 Log penalty Chi2
 Systematic shifts
                           247
```

• χ^2 /dof at minimum = 765/397

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

• (Preliminary) fit results:

```
Partial chi2s
Dataset 1
                 2.46( +0.25)
                                4 ATLAS lmDY pT 13 TeV 12.0-14.0 GeV
Dataset
                 9.89( -0.35)
                                4 ATLAS lmDY pT 13 TeV 14.0-17.0 GeV
                20.09( -0.44)
                                4 ATLAS lmDY pT 13 TeV 17.0-22.0 GeV
Dataset
Dataset
                 6.82( -0.36)
                                4 ATLAS lmDY pT 13 TeV 22.0-28.0 GeV
                 1.06( -0.30)
                                4 ATLAS lmDY pT 13 TeV 28.0-36.0 GeV
Dataset
Dataset
                 6.70(-0.20)
                                4 ATLAS lmDY pT 13 TeV 36.0-46.0 GeV
Dataset
                 3.59( -0.30)
                                4 ATLAS lmDY pT 13 TeV 46.0-56.0 GeV
                 2.33( -0.38)
                                9 ATLAS Z pT 8 TeV 0.0-0.4
Dataset
        9
                 1.84( -0.40)
                                9 ATLAS Z pT 8 TeV 0.4-0.8
Dataset
                 3.08( -0.44)
                                9 ATLAS Z pT 8 TeV 0.8-1.2
Dataset 10
Dataset
        11
                 1.13( -0.42)
                                9 ATLAS Z pT 8 TeV 1.2-1.6
Dataset 12
                 2.04( -0.41)
                                9 ATLAS Z pT 8 TeV 1.6-2.0
Dataset 13
                 0.77( -0.45)
                                9 ATLAS Z pT 8 TeV 2.0-2.4
                 1.70( -0.48)
                                9 ATLAS Z pT 8 TeV 2.4-2.8
Dataset 15
                 5.47( -0.45)
                                9 ATLAS Z pT 8 TeV 2.8-3.6
Dataset 16
                 2.64( +0.30)
                                4 E288 200 GeV M 4-5 GeV
Dataset
                 8.43( +0.83)
                                5 E288 200 GeV M 5-6 GeV
Dataset
        18
                 3.65( +1.19)
                                6 E288 200 GeV M 6-7 GeV
                                7 E288 200 GeV M 7-8 GeV
Dataset 19
                 2.88( +2.62)
                 3.06( +5.24)
                                8 E288 200 GeV M 8-9 GeV
Dataset 20
Dataset 21
Dataset 22
                 8.34( +0.27)
                                4 E288 300 GeV M 4-5 GeV
                 6.54( +0.78)
Dataset 23
                                5 E288 300 GeV M 5-6 GeV
Dataset 24
                 2.02( +1.13)
                                6 E288 300 GeV M 6-7 GeV
Dataset 25
                                7 E288 300 GeV M 7-8 GeV
                 2.02(+1.15)
Dataset 26
                 7.69( +1.08)
                                8 E288 300 GeV M 8-9 GeV
Dataset 27
                40.56( -3.91)
                                10 E288 400 GeV M 10-11 GeV
Dataset 28
                 8.96( +1.68)
                                10 E288 400 GeV M 11-12 GeV
Dataset 29
                 6.11( +2.59)
                                10 E288 400 GeV M 12-13 GeV
Dataset 30
                 3.62( +4.59)
                                10 E288 400 GeV M 13-14 GeV
Dataset 31
                5.75( +1.05)
                                5 E288 400 GeV M 5-6 GeV
Dataset 32
                13.07( +1.24)
                                6 E288 400 GeV M 6-7 GeV
Dataset 33
               10.48( +1.48)
                                7 E288 400 GeV M 7-8 GeV
Dataset 34
                                8 E288 400 GeV M 8-9 GeV
               10.25( +1.44)
Dataset 35
               71.64( -6.11)
                                10 E288 400 GeV M 9-10 GeV
Dataset 36
                7.51( -0.48)
                                7 E605 M 7-8 GeV
Dataset 37
               10.92( +0.52)
                               8 E605 M 8-9 GeV
                               11 E605 M 10.5-11.5 GeV
               10.61( +1.16)
Dataset 38
Dataset
        39
                20.37( +0.20)
                                12 E605 M 11.5-13.5 GeV
         40
                21.68( +1.87)
                                14 E605 M 13.5-18 GeV
Dataset
Dataset 41
                1.47( +0.75)
                                4 E772 M 5-6 GeV
Dataset 42
                 3.89( +1.45)
                                5 E772 M 6-7 GeV
Dataset 43
                 4.84( +0.74)
                                6 F772 M 7-8 GeV
                 7.13( +0.65)
                                6 E772 M 8-9 GeV
Dataset 45
                11.66( +2.55)
                                8 E772 M 11-12 GeV
Dataset 46
                11.76( +3.58)
                                8 E772 M 12-13 GeV
Dataset
         47
                 5.54( +3.14)
                                6 E772 M 13-14 GeV
Dataset 48
                 1.25( +0.37)
                                6 E772 M 14-15 GeV
Dataset 49
                 3.43( -0.67)
                                55 CDF ZPT 1.96 TEV
 Correlated Chi2 316.75875586412513
                  37.735584781810601
 Log penalty Chi2
 Systematic shifts
```

- χ^2 /dof at minimum = 765/397
- Estimated values of the NP parameters:

•
$$g_0 = 0.508 \pm 0.053 \text{ GeV}^2$$

•
$$g_1 = 0.612 \pm 0.039 \text{ GeV}^2$$

•
$$\lambda = 2.501 \pm 0.416 \text{ GeV}^2$$

•
$$q = 0.003 \pm 0.001 \text{ GeV}^4$$

Correlation matrix:

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

• (Preliminary) fit results:

- Diagonalise covariance matrix to derive 4 eigenvectors of independent g_0, g_1, λ, q variations.
- Compute p_T of W^+ at NNLO+NNLL at 13 TeV with central g_0, g_1, λ, q values and eigenvariations.
- Sum in quadrature to derive a "TMD" uncertainty band: $\delta \sigma(\text{TMD}) = \frac{1}{2} \sqrt{\sum_{i} \left(\sigma_{+\text{eig}_i} \sigma_{-\text{eig}_i} \right)^2}$

TMD fits: extraction of non-perturbative parameters from Drell-Yan data

• Next steps:

- Improve predictions, i.e. add N3LO corrections for the predictions of low-mass DY data, try other aN3LO PDF sets (aN3LO NNPDF4.0).
- Validate and refine estimation of post-fit uncertainties, i.e. Minuit + Hesse on top of CERES.
- Estimate correlation between TMD NP parameters and PDF uncertainties and propagate again the uncertainties to p_{T}^W and also to the predicted p_{T}^l .
- Study alternative parametrisations for the NP form factor.
- Study fit dependence on modelling variations involving heavy-flavours and PDF evolutions, which can lead to differences in particular in g_1 and q.
- ... and much more to come:)