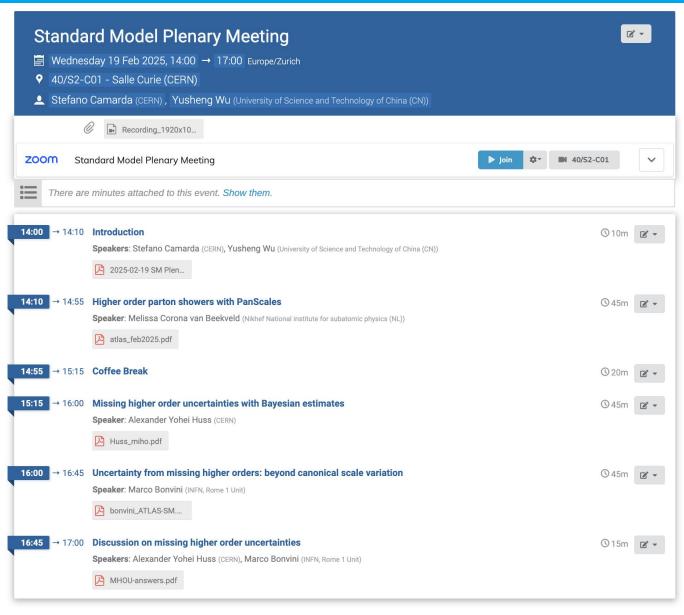
SM parallel summary

Savannah Clawson

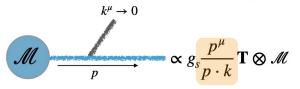
DESY ATLAS SM group meeting 25th February 2025



Context

- SM parallel session during ATLAS week: <u>indico.cern.ch/event/1503605/</u>
- In the next years we expect
 - → Slow but steady increase in integrated luminosity
 - → None or marginal increase in √s
 - Breakthroughs in calibration techniques leading to reduced experimental systematic uncertainties
- Physics modelling is an important uncertainty in many SM analyses and could begin to dominate in the future if action is not taken to reduce theoretical uncertainties in line with experimental ones
- To reach our physics goal we are looking for
 - → Developments in MC generators
 - → Improved understanding of theory uncertainties

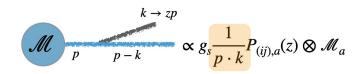
The agenda



NNLL parton showers with PanScales

- Parton showers are a key part of MC generation
- Emission of additional particles: denominator in kinematic factor leads to logarithmic enhancements that need to be resummed to all orders
- PanScales project is aiming to build the next generation of Next-to-Next-to-Leading-Log parton showers

NLL beyond colour singlet


Emission of a soft gluon: the eikonal Feynman rule

T is a colour-generator

- · Spin dependence is factorised
- · Colour dependence is not

Emission of a collinear particle: Splitting functions $P_{(ij)a}$

a is a spin index

- Colour dependence is factorised
- Spin dependence is not

Panscales [2312.13275]

Code publicly available: gitlab.com/panscales-0.X

All of these ingredients will ultimately be needed for a full NNLL-accurate shower

Correct description of soft(-)collinear

emissions at (N)NLO

NNLL for event shapes

Triple collinear

corrections

NSL for collinear observables

(i.e. jet substructure)

Double-soft Corrections

NSL for multiplicities and non-

global event shapes

NLL for colour singlet including subleading colour and spin correlations

Matching for *pp*/DIS

Subleading

colour

Matching for e^+e

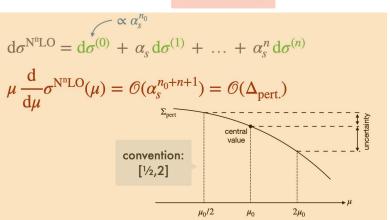
brings NNDL accuracy

necessary for NNLL

Spin

correlations

Missing higher order uncertainties


• various sources that contribute to Δ_{TH} :

MHO = **M**issing **H**igher **O**rder

- $\Delta_{\alpha,'}$ Δ_{param} : parametric uncertainties \iff exp. extraction
- Δ_{PDF} : parton distribution functions (PDFs) \iff fits to data, lattice(?), ...
- $\Delta_{\text{non pert.}}$: intrinsic k_T , hadronisation, UE, ... \iff TMD, parton showers, ...
- $\Delta_{\text{pert.}}$: missing higher-order corrections \iff conceptually tricky

Focus here

- MHO uncertainties traditionally estimated via scale variation
- Main issues with scale variation are
 - Choice of the central scale μ₀
 - → No probabilistic interpretation
 - → No correlation model

- Bayesian inference is a powerful framework to estimate Δ_{MHO}
 - probabilistic interpretation $\iff P(\delta_{n+1} | \delta_n)$
 - exposes our assumptions & biases clearly \iff model & priors

but: it is not more reliable than scale variation was careful analysis required

relying on a single prescription for TH unc. in precision measurements is potentially dangerous!

Summary

To conclude

Don't ask for a recipe from the theory community

It is important to understand what is going on, and to choose wisely

Interactions TH-EXP like this one are very important!